

RELAYS CATALOG

CHAUVIN ARNOUX ENERGY

MANUFACTURING RELAYS SINCE 960

over 200 References

OF K3 QUALIFICATION

FACTORIES manufacture and assemble the spare paCOs for our relays

COMPLIANCE WITH SEVERAL TENS OF STANDARDS

and customer specifications in the rail, nuclear, power generation and transmission, and naval sectors

> Countries where our relays are produced and assembled

CONTENTS

THE COMPANY	P. 4
APPLICATIONS	P. 6
MAIN FEATURES OF OUR RELAYS	P. 8
OUR SELECTION GUIDE (+ INFO ABOUT OUR OPTIONS)	P. 10

RELAYS	P. 18
MONOSTABLE INSTANTANEOUS RELAYS	P. 20
MONOSTABLE INSTANTANEOUS RELAYS	
	P. 62
BISTABLE RELAYS	P. 82
FAST-ACTING MONOSTABLE AND BISTABLE RELAYS	P. 102
RELAYS WITH TIME DELAY ON PICK-UP	
OR DROP-OUT (LOGICAL FUNCTION)	P. 122
TIMED RELAYS WITH FORCIBLY GUIDED CONTACTS	P. 170
MEASURING RELAY	P. 178

SOCKETS	P. 184
EXPLANATIONS CONCERNING SOCKET NUMBERING	P. 186
SOCKETS WITH FRONT CONNECTION	P. 188
SOCKETS WITH FRONT CONNECTION / SPRING CLAMP TERMINALS	P. 188
SOCKETS WITH FRONT CONNECTION / SCREW TERMINALS	P. 190
SOCKETS WITH SINGLE FASTON FRONT CONNECTION	P. 199
	P. 200
SOCKETS WITH REAR CONNECTION / SPRING CLAMP TERMINALS	P. 200
SOCKETS WITH REAR CONNECTION / SCREW TERMINALS	P. 204
SOCKETS WITH SINGLE FASTON REAR CONNECTION	P. 211
SOCKETS WITH DOUBLE FASTON REAR CONNECTION	P. 212
SOCKETS WITH REAR BLADE CONNECTION	P. 220
SOCKETS WITH REAR DOUBLE BLADE CONNECTION	P. 221
MOUNTING ON PCB	P. 222
RETAINING CLIPS	P. 225
	P. 229

INSTALLATION, OPERATION AND MAINTENANCE	P. 229
---	--------

INSTANTANEOUS MONOSTABLE WITH FORCIBLY GUIDED CONTACTS

BISTABLE

NEW CHAUVIN ARNOUXGROUP HEADQUACOERS

12-16 RUE SARAH BERNHARDT 92600 - ASNIÈRES-SUR-SEINE FRANCE

SINCE 1893

128 YEARS of references

<u>FRENCH</u>

MEASURING INSTRUMENT DESIGNERS AND AND MANUFACTURERS

THE CHAUVIN ARNOUX GROUP: 128 YEARS OF REFERENCES

The French Chauvin Arnoux Group has been designing and manufacturing measuring instruments since 1893 and is acknowledged as a major player in the electrical sector. Its position on the physical measurements market in France and internationally is consolidated by its subsidiaries present in 10 countries and its distributor paCOners. The Group has its own R&D teams, technical centers and production sites, allowing complete mastery of the manufacturing chain for a result synonymous with quality and made in France.

CHAUVIN ARNOUX ENERGY: METERING, TESTING AND SUPERVISION

At the heaCO of the electrical measurement professions, Chauvin Arnoux Energy plays a crucial role in the implementation of energy management and control systems. PaCO of the Group since 1998, CA Energy covers specific requirements in the nuclear, T&D, naval and railway sectors:

- PLCs and safety-critical relays in cutting-edge industries
- Electrical network supervision, from power generation through to distribution
- Power supply quality.

Developing energy for your needs!

EXPECOISE BASED ON LONG EXPERIENCE

Within the Group, Chauvin Arnoux Energy offers the actors in energy and naval applications fixed electrical switchboard equipment for measuring, checking and monitoring the power distribution chain. For more than sixty years, the Group has been proposing its expeCOise in automation relays for harsh environments: nuclear, electricity transmission and distribution, and railways. It also draws on the expeCOise and know-how of its Italian subsidiary, AMRA Spa, which has been manufacturing electromechanical relays since 1975. The integration of relays from RIA - MTI, a well-known manufacturer since 1957, **now makes Chauvin Arnoux Energy a major player in the world of automation relays**.

VILLEDIEU-LES-POÊLES QQ VIRE

OUR PRODUCTION SITES AND INNOVATION CENTER

For Chauvin Arnoux, the choice to manufacture in France remains obvious. We thus benefit from guaranteed quality and traceability because we are "made in France". Our mastery of the production process enables us to monitor the products and solutions under the Chauvin Arnoux brand.

VILLEDIEU-LES-POÊLES (FRANCE)

More than a hundred people working spread across 4000 square meters devoted mainly to electronics manufacturing. This is where we make single-and double-sided, flexible and rigid printed circuit boards up to Class V. In this way, 800,000 components can be assembled every week for CA Energy and the Group's other brands.

VIRE (FRANCE)

Vire is the site where our current sensors are assembled. Two main buildings of 4,300 and 1,400 square meters house 140 people manufacturing our spare paCOs. The larger building produces the mechanical paCOs for our measuring instruments: turned, machined, milled and cut paCOs, as well as the shielding and casings made of sheet metal. The second building is dedicated to plastic injection for molding the casings of our products.

REUX (FRANCE)

10,000 square meters of buildings housing the Group's logistics; the warehouses for storing the paCOs, the assembly workshops, the finished product stores and the shipping depaCOment. More than 60,000 references are managed in these warehouses which group the paCOs needed to manufacture the measuring instruments assembled on the site and the finished products ready for shipment all over the world.

The site is equipped with a single platform from which the instruments from the Group's different brands are shipped to France, the subsidiaries and the international markets.

Our Italian subsidiary **AMRA's site** at Macherio, near Milan, manufactures and assembles a wide range of relays, from standard models to highly specific products. This range is designed for applications in railway rolling stock and electricity generation and transmission in compliance with the standards in those sectors. Over the years, these relays have been approved and ceCOified by all the main users in these different markets.

5

KEVING

APPLICATIONS

Marketed under the **CHAUVIN ARNOUX** brand, our products have become essential in the most demanding applications and sectors, mainly in electrical power generation, transmission and distribution, the petrochemical and mining industries, commercial shipbuilding and the rail industry (rolling stock and infrastructure). All these applications share a common requirement: continuity of service. A shutdown of the system may often cause serious inconvenience for the public and additional costs for the industrial company, as well as damaging its image. Working as a designer means choosing components whose reliability and durability are proven, with a high operational responsibility.

POWER GENERATION, TRANSMISSION AND DISTRIBUTION

- Protection, control and monitoring systems for HV distribution stations
- Protection, control and monitoring systems for electrical power generation stations
- Automation systems for turbines, alternators and transformers
- Monitoring and control systems for reservoirs, dams and valves/sluices
- Trip relays

PETROCHEMICALS AND CHEMICALS INDUSTRIES, SHIPBUILDING, HEAVY INDUSTRY

- Protection, control and monitoring systems for power transformation and conversion
- Instrumentation desks and automation of manufacturing processes
- MV load centers
- Electrical switchboards in motor control centers (MCC)

Use the symbol of the application to identify the right product more easily.

14

ROLLING STOCK

- Door control
- Brake systems
- Safety loops
- Pantograph control
- Lighting and air-conditioning control
- Battery charge monitoring
- Traction systems
- Vehicle safe-running control systems (ECO, MS, SCMT, ATS, etc.)

POWER SYSTEMS, AC/DC CONVERSION AND ELECTRIC RAIL TRACTION

- Protection, control and monitoring systems for AC/DC conversion stations
- Line disconnect control panels
- Supervision of line voltage presence
- PPF power supply systems
- Trip relays
- Railway signaling power supply systems

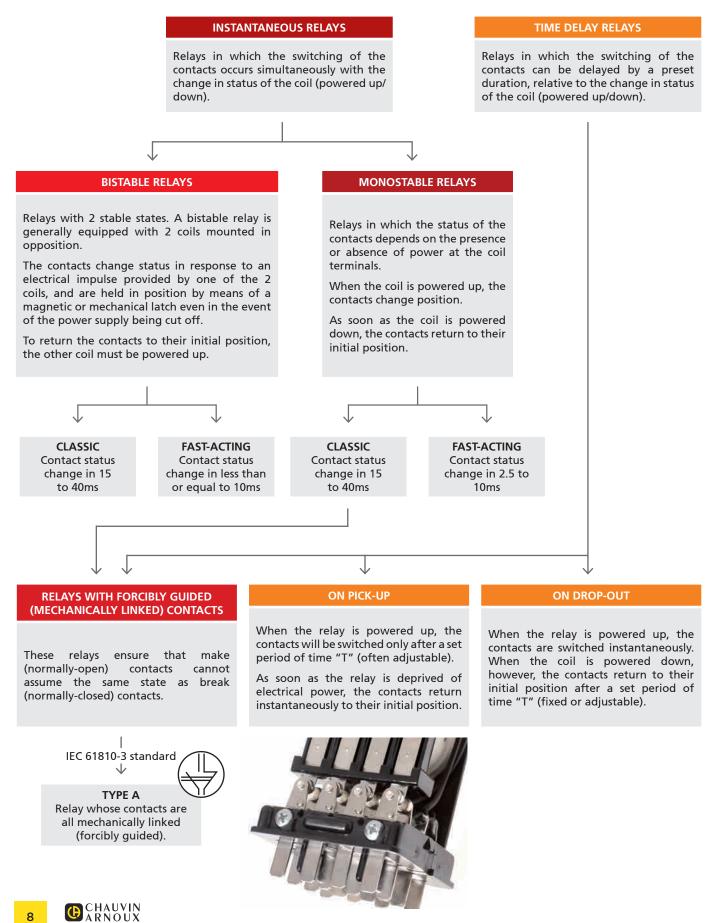
FAS (MON

(ON PICK-

RCIBLY GUIDED

ASUREMENT

SOCKET NUMBERINC EXPLANATIONS


> FRONT CONNECTION

BACK CONNECTION

KEYING

TYPES OF RELAYS

Electromechanical relays can offer several functions:

ENERG

FAST-ACTING (MONOSTABLE AND BISTABLE)

ARNOUX

COIL SUPPLY VOLTAGE

The power supply used by relays is characterized by a number of factors, and principally:

NOMINAL VOLTAGE (Un): voltage value which is sufficient to actuate the contacts

OPERATING RANGE: the voltage range within which the relay functions correctly, expressed usually as a percentage of the nominal voltage

CONSUMPTION: power drawn by the relay during operation

DROP-OUT VOLTAGE: standard value (expressed as percentage of nominal voltage) defining the voltage at which drop-out/ de-energization of the relay is ceCOain to occur.

Some applications require paCOicularly wide operating ranges, for example 0.7 to 1.25 Un in the case of electromechanical components used on rolling stock.

PROTECTION DEVICES

On a relay, when the power supply is discontinued, energy stored in the coil inductance creates an electromotive force contrary to that of the power supply. This stray voltage can reach values measured in thousands of volts. In this situation it is possible to install voltage suppression components , such as DIODES FLYBACK, VARISTorS or TRANSIL DIODES.

FLYBACK DIODE

The suppression component most widely adopted. This component provides a very low recirculation resistance for the energy accumulated at the terminals of the coil.

DIODE TRANSIL

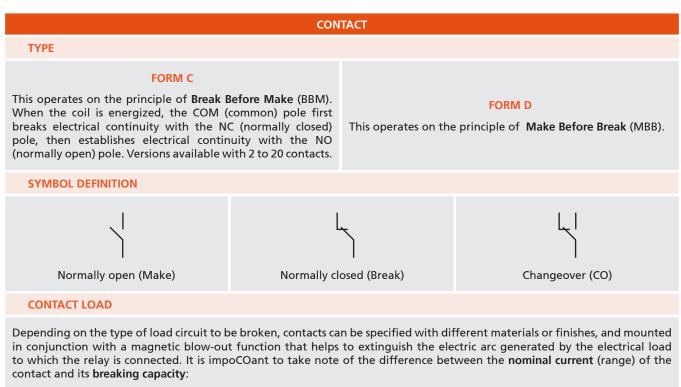
UNIDIRECTIONAL TRANSILS

These block disturbances in one direction only, whereas in the presence of voltages with opposite polarity they respond as normal diodes.

VARISTOR

A variable resistor (non-polarized), whose resistance value depends on the applied voltage.

BIDIRECTIONAL TRANSILS


These are installed in circuits where an alternating voltage is present; they consist of two Transil diodes connected in antiseries.

9

KEVING

MAIN FEATURES OF OUR RELAYS

• NOMINAL CURRENT: The current that can flow through a contact for an indefinite period of time without the contact suffering damage.

• THE BREAKING CAPACITY: Depending on its specific attributes, the relay can break high or low power loads. The breaking capacity, expressed in amperes, is the maximum level of current that can be broken by the paCOicular relay under specific conditions.

By determining these parameters, it is possible to establish the electrical life expectancy of the contact/relay. The contacts of relays are subject to wear; depending on the type of use envisaged, the manufacturer indicates an electrical life expectancy and a mechanical life expectancy.

LIFE EXPECTANCY

The number of successful operations that can be accomplished	The nu
by a contact, breaking or making a given load circuit at a	by a c
selected hourly frequency, with no impairment of its electrical	selecte
characteristics.	desigr

ELECTRICAL

MECHANICAL

number of successful operations that can be accomplished contact under no-load conditions (no electrical load) at a ted hourly frequency, with no impairment of characteristics designed to ensure correct operation of the relay.

PROTECTION	
MAGNETIC ARC BLOW-OUT	Permanent magnet allowing an electric arc to be extinguished more quickly, thus increasing the breaking capacity.
GOLD-PLATING OF THE CONTACTS	This has the effect of lowering surface resistance and enabling the conduction of lower currents than would be possible with an untreated contact.

POK relay with gold-plated contacts and terminals plus tropicalized coil.

CHAUVIN ARNOUX

The operating range is wider than indicated normally for standard electromechanical **OPERATING RANGE** components, as relays can also be battery-powered. In rolling stock, the temperature range will usually be wider than the range indicated for **OPERATING TEMPERATURE** industrial applications.

of fire breaking out on board.

sector, with specify more stringent operating constraints than those of standard product regulations. Harmonized European and extra-European standards tend to regulate the following parameters.

ELECTRICAL POWER GENERATION

ENVIRONMENTAL AND OPERATING CONSTRAINTS

to be taken into consideration for correct analysis:

RAIL, TRAM, TROLLEY AND METRO

OPERATING TEMPERATURE

RELATIVE HUMIDITY

RESISTANCE TO SHOCK

AND VIBRATION

REACTION TO FIRE

correctly.

RANGE

Electricity generating stations are complex environments. The loads supervised by control systems often use DC voltages, so the relay contacts must be suitable for switching these loads.

APPLICATIONS

To ensure that you choose the right relay for a given application, any environmental constraint must first be interpreted

Depending on the application for which it has been chosen, any relay may be exposed to diverse environmental constraints

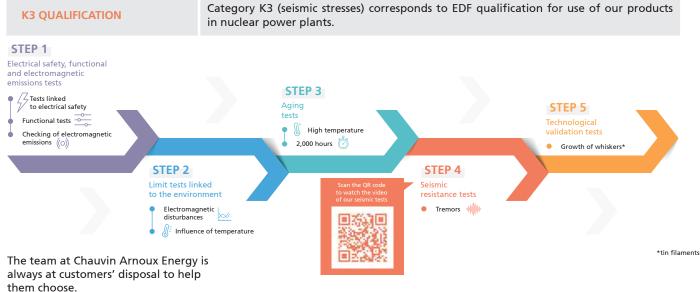
which may prevent correct operation and accelerate its deterioration if ity is incorrectly assessed. The following factors need

In the case of transpoCO applications (rail, tram, and metro), consideration must be given to the regulations governing this

The ambient temperature at which the relay is required to operate. In the event of

conditions being variable, worst case minimum and maximum values must be considered.

Percentage value indicating the level of ambient humidity; for values higher than 75%

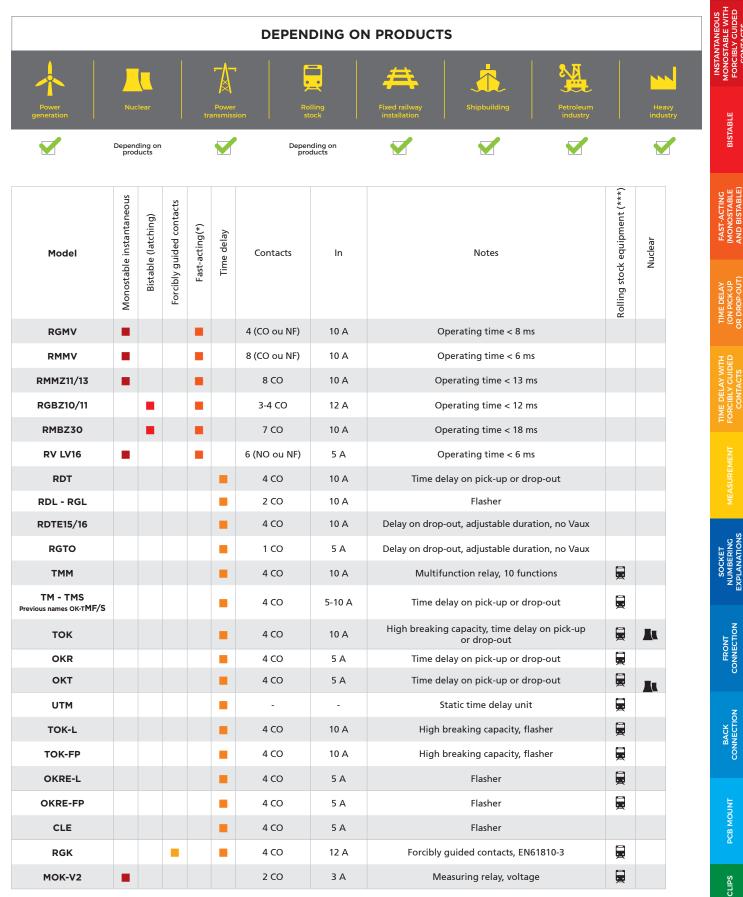

The specified requirements are intended to protect passengers and crew in the event

and up to 95%, selection of a relay with tropicalized coil is advisable.

These can damage the component or cause contacts to open spontaneously.

Nuclear, thermoelectric, hydroelectric and wind power installations are also required to withstand heavy duty, non-stop operating conditions. They impose paCOicularly stringent requirements in terms of guaranteeing continuity of service and long-term reliability. In the case of hydroelectric and wind power generating facilities located in places where access is difficult (mountains or offshore platforms), maintenance costs tend to be high.

PaCOicular care must also be taken where there are significant variations in temperature and vibration for these applications.



SELECTION GUIDE

	DEPENDING ON PRODUCTS											
Power generation	er Nuclear Power transmissio		wer mission	Rolling	Fixe	ed railway stallation	railway Shipbuilding Petroleum industry					
	Depending product	g on s				Depending o products	'n					,
Model	Monostable instantaneous	Bistable (latching)	Forcibly guided contacts	Fast-acting(*)	Time delay	Contacts	In		Notes		Rolling stock equipment (***)	Nuclear
RCM						2 CO	10 A		Compac	t		
RDM						4 CO	10 A		Compac	t		
RGM						4 CO	12 A		High breaking cap	pacity (**)		
RMMX	-					8 CO	10 A		Multi-contact, compact			
RMM						8-12-20 CO	12 A	High breaking capacity, multi-contact		, multi-contact		
POK-POKS						2 CO	5-10 A	Compact		:		
BIPOK-BIPOKS						4 CO	5-10 A	Compact				L
TRIPOK-TRIPOKS						6 CO	5-10 A	Compact		:		
QUADRIPOK						8 CO	10 A		Compact			
ESAPOK						12 CO	10 A		Compact	:		
ок	-					4-8-12 CO	10 A		High breaking o	apacity		
OKB184	-					4 CO	10 A		High breaking capacit	y, K3-qualified		
RE3000						4 CO	10 A		K3-qualifi	ed		
FOKB						4 CO NC-NO	13 A		High breaking capaci	ty, NF F62-002		
RCG						2 CO	10 A	Fo	rcibly guided contacts, t	type A, EN61810-3		
RDG	-					4 CO	10 A	Fo	rcibly guided contacts, t	type A, EN61810-3		
RGG Previous name RGMZ	x =		•			4 CO	10 A	High	breaking capacity, forc type A, EN61			
RMGX	-					8 CO	10 A	High	breaking capacity, forc type A, EN61			
RGB						3-4 CO	12 A		High breaking o	capacity		
RMBX		•				7-8 CO	10 A		Multi-cont	act		
RMB						7-11-19 CO	10 A		High breaking capacity common neg			
ОКВА						4-8 CO	10 A		High breaking o			
RGMVX						4 CO	10 A		Operating time	< 8 ms		
RMMV/X	•			•		8-12 CO	10 A	Operati	ng time < 8 ms for com < 10 ms	pact models, otherwise		
RGR						2 CO	2 A		Operating time	< 3 ms		

BISTABLE

* Unless stated otherwise, operating times indicated in the catalog are understood as being inclusive of bounces

** Relays with contact specifications guaranteeing efficient break of strongly inductive DC loads, even with 220Vdc voltages

*** These relays comply with regulations applicable to rolling stock; also suitable for use in other applications.

KEYING

13

CHAUVIN ARNOUX

PCB MOUNT

RETAINING CLIPS

SELECTION GUIDE

	F	RONT Connection	n				
TERMINAL	SCR	EW	SPRING CLAMP	SCREW DOUBLE FASTON		SPRING CLAMP	РСВ
MOUNTING	PLATE-WALL / PLATE-WALL DIN RAIL		PLATE-WALL / DIN RAIL	FLUSH MOUNTING		i	SOLDER
RELAY MODEL				SOCKET MODEL			
RCM	PAVC081	-	PAIR085	PRVC081	PRDC081	-	PRCC080
RDM	PAVD161	-	PAIR165	PRVD161	-	-	PRCD161
RGM	PAVG161	-	-	PRVG161	PRDG161	-	-
RMMX	96IP20-I DIN	-	PAIR320	-	ADF4	PRIR320	-
RMM (8 cts)	PAVM321	-	-	PRVM321	PRDM321	-	-
RMM (12 cts)	PAVM481	-	-	PRVM481	PRDM481	-	-
RMM (20 cts)	PAVM801	-	-	PRVM801	PRDM801	-	-
POK-POKS	50IP20-I DIN	50L	PAIR080	53IL	ADF1	PRIR080	65
BIPOK-BIPOKS	48BIP20-I DIN	48BL	PAIR160	43IL	ADF2	PRIR160	65
TRIPOK-TRIPOKS	78BIP20-I DIN	78BL	PAIR240	73IL	ADF3	PRIR240	-
QUADRIPOK	96IP20	96BL	PAIR320	43IL	ADF4	PRIR320	65
ESAPOK	156IP20	78BL	PAIR480	73IL	ADF6	PRIR480	-
ОК / ОКВ184	48BIP20-I DIN	48BL	PAIR160	43IL	ADF2	-	65
RE3000	EVV3100	EVL3100*	-	ERV3100	ERL320*	ERL310*	-
FOKB	-	-	-	-	84F*	-	-
RCG	50IP20-I DIN	-	PAIR080	-	ADF1	PRIR080	65
RDG	48BIP20-I DIN	-	PAIR160	-	ADF2-BIPOK	PRIR160	65
RGG	48BIP20-I DIN	-	PAIR160	43IL	ADF2	PRIR160	65
RMGX	96IP20-I DIN	-	PAIR320	-	ADF4-E1	PRIR321	-
RGB	PAVG161	-	-	PRVG161	PRDG161	-	-
RMBX	96IP20-I DIN	-	PAIR320	-	ADF4	PRIR320	-
RMB (7 cts)	PAVM321	-	-	PRVM321	PRDM321	-	-
RMB (11 cts)	PAVM481	-	-	PRVM481	PRDM481	-	-
RMB (19 cts)	PAVM801		-	PRVM801	PRDM801	-	-
ОКВА	48BIP20-I DIN	48BL	PAIR160	43IL	ADF2	PRIR160	65

*EVL3100: Faston front connection

*ERL320: double blade

*ERL310: single blade

*84F: Single Faston

OLD SOCKET NAME	NEW SOCKET NAME
50	50IP20-I DIN
48B	48IP20-I DIN
78B	78IP20-I DIN
50BF	50L
48BF	48BL
78BF	78BL
65F	65

ANEOUS BLE WITH MONOSTABLE CUIDED INSTANTANEOUS CTS

	FRONT Connection REAR Connection							INSTAN
TERMINAL	SCR	EW	SPRING CLAMP	SCREW	DOUBLE FASTON	SPRING CLAMP	РСВ	
MOUNTING	PLATE-WALL / DIN RAIL	PLATE-WALL	PLATE-WALL / DIN RAIL		NG	SOLDER		
RELAY MODEL				SOCKET MODEL				
RGMVX	48BIP20-I DIN	-	PAIR160	-	ADF2	PRIR160	-	PACT ACTING
RMMVX	96IP20-I DIN	-	PAIR320	-	ADF4	PRIR320	-	
RMMVx1/7	PAVM481	-	-	PRVM481	PRDM481	-	-	
RGR	PAVG161	-	-	PRVG161	PRDG161	-	-	
RGMV	PAVG161	-	-	PRVG161	PRDG161	-	-	
RMMV	PAVM321	-	-	PRVM321	PRDM321	-	-	
RMMZ11 / 13	PAVM321	-	-	PRVM321	PRDM321	-	-	
RGBZ10 / 11	PAVG161	-	-	PRVG161	PRDG161	-	-	
RMBZ30	PAVM321	-	-	PRVM321	PRDM321	-	-	
RV LV16	78BIP20-I DIN	-	PAIR240	73IL	ADF3	PRIR240	-	
RDT	PAVD161	-	PAIR165	PRVD161	-	-	PRCD161	
RDL	PAVD161	-	PAIR165	PRVD161	-	-	PRCD161	
RGL	PAVG161	-	-	PRVG161	PRDG161	-	-	
RDTE15 / 16	PAVD161	-	PAIR165	PRVD161	-	-	PRCD161	
RGTO	PAVG161	-	-	PRVG161	PRDG161	-	-	
тмм	48BIP20-I DIN	48BL	PAIR160	43IL	ADF2	PRIR160	65	
TM - TMS	48BIP20-I DIN	48BL	PAIR160	43IL	ADF2	PRIR160	65	
ток	48BIP20-I DIN	48BL	PAIR160	43IL	ADF2	PRIR160	65	
OKR	48BIP20-I DIN	48BL	PAIR160	43IL	ADF2	PRIR160	65	
окт	48BIP20-I DIN	48BL	PAIR160	43IL	ADF2	PRIR160	65	
UTM	48BIP20-I DIN	48BL	PAIR160	43IL	ADF2	PRIR160	65	
TOK-L	48BIP20-I DIN	48BL	PAIR160	43IL	ADF2	PRIR160	65	
ТОК-FP	48BIP20-I DIN	48BL	PAIR160	43IL	ADF2	PRIR160	65	
OKRE-L	48BIP20-I DIN	48BL	PAIR160	43IL	ADF2	PRIR160	65	
OKRE-FP	48BIP20-I DIN	48BL	PAIR160	43IL	ADF2	PRIR160	65	
CLE	48BIP20-I DIN	48BL	PAIR160	43IL	ADF2	PRIR160	65	
RGK	48BIP20-I DIN	-	PAIR160	-	ADF2	PRIR160	-	
MOK-V2	48BIP20-I DIN	48BL	PAIR160	43IL	ADF2	PRIR160	65	1

For more details, please see the socket datasheets.

The product code is obtainable from the "Ordering scheme" table indicated in the data sheets for each product.

Codes to orde		-1	2	3	4		5	6	-7-
Model	Number of CO contacts	Product code	Application (1)	Configuration A	Configuration B	Label	Type of input supply	Nominal voltage(V) ⁽²⁾	Keying position ^{(;} / option
РОК	2 - 5A	POK		1: Standard	0: Standard				
POKS	2 - 10A	POKS	F . F	2: Diode //	2: P2				XXX
BIPOK	4 - 5A	BPOK	E: Energy / Railway fixed	3: Varistor	4: P4 GEO			012 - 024 - 036	CS =
BIPOKS	4 - 10A	BPOKS	equipment	4: LED	5: P5 GEO		C: Vdc	048 - 072 - 096	PCB-moun
TRIPOK	6 - 5A	ТРОК	- 4	5: Diode // + LED	6: P6 GEO	F	A: Vac 50 Hz	100 - 110 - 125 127 - 132 - 144	version
TRIPOKS	6 - 10A	TPOKS	R: Railway rolling stock	6: Varistor + LED	7: P7		H: Vac 60 Hz		L =
QUADRIPOKS	8 - 10A	QPOK		7: Transil	8: P8			220 - 230	Low temperatu
ESAPOKS	12 - 10A	EPOK		8: Transil + LED					temperata

Example	BPOKS	R	5	8	F	С	024			
	BPOKSR58F-C024 - BIPOKS relay, ROLLING STOCK series, nominal voltage 24 Vdc, with diode, LED and P8 finish (gold-plated contacts)									

PRODUCT CODE	Relay model. This field may correspond exactly to the name of the model (e.g. POKS) or may be an abbreviation of the name (e.g. QPOK = QUADRIPOK).
APPLICATION	 Sector in which the relay is used. Depending on the sector and application, relays may need to have different finish specifications and to meet special constructional constraints. E Series: Energy/Railway fixed equipment These relays are suitable for use in sectors such as electrical power generation, transmission and distribution, petrochemicals, shipbuilding and heavy industries in general, as well as railway fixed equipment. R Series: Railway rolling stock Relays suitable for use on rolling stock, paCOicularly for railway applications, trans, transmission and metroes (ID)
	trolleybuses and metros. "R" relays comply with the requirements of the standards in this sector.
CONFIGURATION A	Available versions and options
CONFIGURATION B	Available versions and options
TYPE OF INPUT SUPPLY	DC voltage, 50 Hz AC voltage, 60 Hz AC voltage, DC + AC voltage.
NOMINAL VOLTAGE	Voltage rating. of the relay
KEYING POSITION/ OPTION	 Field used to indicate the possible inclusion of a keying position and/or other options. Keying position PCB-mount model (code CS) "R" application (Railway, rolling stock): depending on the model of the relay, coils may be available with operating ranges different to those indicated in EN60077 standard (0.75 1.25 Un). Consult the data sheets of the single products for more details. Example of code for ordering a special operating range = Z01, Z02, Z03, etc. Options (low temperature, manual operating lever, etc.)
	APPLICATION CONFIGURATION A CONFIGURATION B TYPE OF INPUT SUPPLY NOMINAL VOLTAGE KEYING POSITION/

TANEOUS ABLE WITH Y GUIDED

OPTIONS

Depending on the product line, there is a wide range of options available.

OPTION	DESCRIPTION	BISTABLE
P2 / TROPICALIZATION	Tropicalization of coil with epoxy resin for exposure to 95% RH (@ T 50 °C). This treatment also protects the coil against corrosion that could occur through the combination of humidity and ceCOain chemical agents, such as those found in acid atmospheres (typical of geothermal power stations) or saline atmospheres.	FAST-ACTING (MONOSTABLE AND BISTABLE)
P4GEO / GOLD PLATING	Gold plating of contacts with gold-nickel alloy, thickness $\ge 6\mu$, on nickel. This treatment ensures long-term capacity of the contact to conduct lower currents in harsh ambient conditions such as acid atmospheres (typical of geothermal power stations) or saline atmospheres.	TIME DELAY (ON PICK-UP OR DROP-OUT)
P5GEO	P4GEO gold-plating of contacts + P2 coil tropicalization.	LAY WITH Y GUIDED TACTS
P6GEO	P4GEO type gold-plating, but applied to contacts, contact terminals and output terminals + P2 coil tropicalization.	TIME DE FORCIBL CON
P7	AgCdO (silver cadmium oxide) contacts.	MEASUREMENT
P8	Gold plating of contacts with gold-cobalt alloy, thickness $\ge 5\mu$, knurled fixed contact. This finish allows fuCOher improvement of the performance provided by gold-plated contact, compared with P4GEO treatment	KET SERING MATIONS
LED	LED indicator showing presence of power supply, wired in parallel with the coil.	SOC NUME EXPLAN
FLYBACK DIODE	Polarized component connected in parallel to the coil (type 1N4007 or BYW56 for the rolling stock version) designed to attenuate the overvoltages generated by the coil when the contacts are opened.	FRONT CONNECTION
VARISTOR	Non-polarized component connected in parallel with the coil, designed to suppress overvoltages higher than the clamping voltage, generated by the coil when de-energized.	
TRANSIL	Non-polarized component connected in parallel with the coil. Behavior is similar to that of a varistor, with faster operating times.	BACK CONNECTION
LOW TEMPERATURE	Minimum operating temperature -50 °C, only for rolling stock version (option "L").	PCB MOUNT
C.S.	PCB-mount version (for POK-POKS-BIPOK-BIPOKS relays only).	
LEVER FOR MANUAL OPERATIONS	Allows manual operation of the relay, with the cover closed, using a screwdriver.	RETAINING CLIPS

17

RELAYS

INSTANTANEOUS MONOSTABLE RELAYS P. 20
MONOSTABLE RELAYS WITH FORCIBLY
GUIDED CONTACTS P. 62
BISTABLE RELAYS P.82
FAST-ACTING RELAYS (MONOSTABLE AND BISTABLE) P.102
TIME DELAY RELAYS (ON PICK-UP OR ON DROP-OUT),
LOGIC FUNCTION P.22
TIME DELAY RELAYS WITH FORCIBLY GUIDED CONTACTS P.170
MEASURING RELAYS P. 178

INSTANTANEOUS MONOSTABLE WITH FORCIBLY GUIDED CONTACTS

19

CHAUVIN ARNOUX

INSTANTANEOUS MONOSTABLE RELAYS

MONOSTABLE INSTANTANEOUS

INSTANTANEOUS MONOSTABLE WITH FORCIBLE OUIDED

FAST-ACTING (MONOSTABLE AND BISTABLE)

TIME DELAY (ON PICK-UP DR DROP-OUT)

> IE DELAY WITH RCIBLY GUIDED CONTACTS

21

CHAUVIN ARNOUX

RCM | **RDM** SERIES

USER SECTORS

RCME

RDME

PRODUCT ADVANTAGES _

- Compact plug-in instantaneous monostable relays
- High performance, compact dimensions
- Self-cleaning knurled contacts
- Magnetic arc blow-out for higher breaking capacity
- Fitted with mechanical optical contact status indicator as standard
- Relay coupled automatically to socket, with no need for a retaining clip
- Operation using DC or AC power supply (directly, without rectifiers or diodes)
- Wide variety of configurations and customizations
- Also available in current-monitoring version
- Also available in PCB-mount version
- Transparent cover, pull-out handle
- Label holder in cover for customer's use
- Positive mechanical keying for relay and socket

DESCRIPTION

The **C** and **D** series are made up of 2 basic models with 2 and 4 change-over contacts, respectively, having similar electrical specifications.

With their **compact dimensions** and **optimum performance**, these relays are suitable for the widest imaginable range of applications, from controlling devices such as HV/MV breakers to the supervision of low power logic circuits. The contacts used are designed to give good levels of performance both with **high and strongly inductive DC loads**, and with particularly **low loads** such as interface signals; inclusion of the magnetic arc blow-out function (optional) helps to achieve a significant increase in breaking capacity. Knurled contacts ensure not only better self-cleaning characteristics, but also lower ohmic resistance thanks to multiple points of electrical connection, thereby extending the electrical life expectancy of the component.

The construction of the relays and their simplified mechanical design combine to ensure these products offer **high reliability in operation**, as proven by their use **for over 40 years** in electrical energy transmission and distribution systems, and fixed equipment used in the railway sector. Benefiting from careful selection of materials, coupled with the technical and professional skills of human resources involved in design and production, this family of relays has found favor with many customers.

Like all Chauvin Arnoux relays, the models in the C and D series are assembled as part of a controlled manufacturing process in which every step of production is verified by the next step in succession. In effect, **each relay is calibrated and tested individually**, by hand, in such a way as to guarantee **top reliability**.

Versatility in manufacture allows the production of relays with any voltage in the range 12 to 220VDC/440VAC, and with a variety of operating ranges adaptable to **various application requirements**. Typical sectors of use are among **the most demanding**, such as, for example, electricity generating stations, electrical transformer stations, fixed equipment for railways, or industries using continuous production processes (chemical and petrochemical, rolling mills, cement factories, etc.). To simplify the operations of installing the relay on the various dedicated sockets, the sockets themselves are equipped with special catches allowing the installer to dispense with retaining clips, although these remain available as accessories.

Models	Number of contacts	Magnetic arc blow-out	PCB-mount	
RCMEx2 - RCMFx2	2			
RCMMx2	2		•	
RCMEx6 - RCMFx6	2	•		OUS
RCMMx6	2	•	•	TANE
RDMEx2 - RDMFx2	4			STAN
RDMMx2	4		•	Z
RDMEx6 - RDMFx6	4	•		_
RDMMx6	4	•	•	_

 \wedge

TO COMPOSE THE PRODUCT CODE, SEE THE "ORDERING SCHEME" TABLE

Coil specifications	RCM	RDM
Nominal voltages Un	DC: 12-24-48-110-125-132-144-220 ⁽¹⁾ - A	C: 12-24-48-110-125-220-230-380-440 ⁽¹⁻²⁾
Power consumption Un (DC/AC)	2W ⁽³⁾ / 3.2VA ⁽⁴⁾ - 4VA ⁽⁵⁾	2.5W / 5VA ⁽⁴⁾ - 7.5VA ⁽⁵⁾
Operating range	DC: 80120 % Un -	AC : 85110 % Un
Type of duty	Conti	nuous
Droup-out voltage ⁽⁶⁾	DC: > 5 % Un -	AC: > 15 % Un

(1) Other values on request.

(2) Maximum AC value = 380V 50Hz - 440V 60Hz.

(3) 2.3W for 220Vdc.

(4) In operation.

(5) On pick-up.

(6) Limit value for supply voltage, expressed as % of the nominal value, beneath which the relay is certain to be de-energized.

Contact specificat	ions	RC	CM .	RC	DM	
	Number and type	2 CO,	form C	4 CO, 1	form C	
Current	Nominal ⁽¹⁾		10	DA		
	Maximum peak ⁽²⁾		13A for 1mi	n - 20A for 1s		
	Maximum pulse ⁽²⁾		100A f	or 10ms		
Example of elect	rical life expectancy ⁽³⁾			- 500,000 operations – 1,80 - 150,000 operations – 1,80	•	
Minimum load	Standard contacts		200mW (1	0V, 10mA)		
	Gold-plated contact	50mW (5V, 5mA)				
Maxir	num drop-out voltage	250 Vdc / 300 Vac				
	Contact material	AgCdO (moving contacts) - AgNi (fixed contacts)				
		RCM.12-16-42-46	RCM.32-36-62-66	RDM.12-16-42-46	RDM.32-36-62-66	
Operating time at Un (ms) ⁽⁴⁾ Pick-up (NC contact opening) Pick-up (NO contact closing)		DC - AC	DC	DC - AC	DC	
		≤ 10 - ≤ 10	≤ 10	≤ 14 - ≤ 10	≤ 14	
		\leq 19 - \leq 18	≤ 19	≤ 23 - ≤ 17	≤ 23	
Drop	-out (NO contact opening)	≤ 4 - ≤ 8	≤ 11	≤ 5 - ≤ 8	≤ 32	
Dro	p-out (NC contact closing)	≤ 16 - ≤ 19	≤ 28	≤ 14 - ≤ 19	≤ 45	

(1) On all contacts simultaneously, reduction of 30%.

4

(2) Maximum peak and pulse currents are those currents that can be handled, for a specified time, by the contact. They do not refer to steady or interrupted currents.

(3) For other examples, see electrical life expectancy curves.

(4) Unless specified otherwise, operating times are understood as comprising stabilization of the contact (inclusive of bounces).

4	Insulation		
	Insulation resistance (at 500Vdc)		L Z
	between electrically independent circuits and between these circuits and ground	> 1,000 MΩ	MOUNT
	between open contact parts	> 1,000 MΩ	E E
	Withstand voltage at industrial frequency		۵.
	between electrically independent circuits and between these circuits and ground	2 kV (1 min) - 2.2 kV (1 s)	
	between open contact parts	2 kV (1 min) - 2.2 kV (1 s)	CLIPS
	between adjacent contacts	2 kV (1 min) - 2.2 kV (1 s)	
	Impulse withstand voltage (1.2/50µs - 0.5J)		Ž
	between electrically independent circuits and between these circuits and ground	5 kV	RETAINING
	between open contact parts	3 kV	<u> </u>

23

FRONT CONNECTION

BACK CONNECTION

Q	Mechanical specifications				
		Mechanical life expectancy	20x10 ⁶ operations		
	Maximum switching rate	Mechanical	3,600 operations/hour		
	Protection (with relay mounted) Dimensions (mm)		IP40		
			RCM	RDM	
			40x20x50 ⁽¹⁾	40x40x50 ⁽¹⁾	
		Weight (g)	60	115	

1. Excluding output terminals.

Environmental specifications					
Operating temperature	-25 to +55 °C				
Storage and shipping temperature	-25 to +70°C				
Relative humidity	Standard: 75% RH - Tropicalized: 95% RH				
Fire behavior	V0				

Q	Standards and reference vallues	
	EN 61810-1, EN 61810-2, EN 61810-7	Electromechanical elementary relays
	EN 60695-2-10	Fire behavior
	EN 61000	Electromagnetic compatibility
	EN 60529	Degree of protection provided by enclosures
	EN 60529	Degree of protection provided by enclosures

Unless otherwise specified, products are designed and manufactured according to the requirements of the European and International standards indicated above. In accordance with EN 61810-1, all items of technical data are referred to ambient temperature 23 °C, atmospheric pressure 96kPa and 50% humidity. Tolerance for coil resistance, nominal electrical input and nominal power is ±7%.

Configurations - Options	
TROPICALIZATION	Surface treatment of the coil with protective coating for use with RH 95%.
GOLD PLATING Surface treatment of contacts, blades and output terminals with gold-cobalt alloy, thickness ≥2µ. This treatment ensures long-term capacity of the contact to conduct lower currents.	
LED	LED indicator showing presence of power supply, wired in parallel with the coil, as alternative to mechanical optical indicator.
FLYBACK DIODE	Component connected in parallel with the coil (type 1N4007) designed to suppress overvoltages generated by the coil when de-energized.

Ordering scheme

Ordening sci	.c.iiic							
Product code	Application ⁽¹⁾	Configuration A	Configuration B	Label	Type of power supply	Nominal voltage (V) ⁽²⁾	Finish ⁽³⁾	Keying position code ⁽⁴⁾
RCM (2 contacts)	E: Energy / Railway fixed	1: Standard 3: Diode // 4: Gold plating 5: LED	2: Standard	F	C: Vdc A: Vac 50Hz	012 - 024 - 048 110 - 125 - 132	T: Tropicalized	xx
RDM (4 contacts)	M: For PCB mounting	6: Gold plating + Diode // 7: Diode // + LED	6: With magnetic blow-out		H: Vac 60 Hz	144 - 220 - 230 380 - 440	coil	**

<i>a</i> .	RCM	E	4	2	F	Α	048	Т			
nple	RGME37F -A048T = ENERGY series relay with 2 CO gold-plated contacts, 48V 50Hz tropicalized coil										
Exan	RDM	E	1	6	F	С	110		DH		
_ [RGMF17F-C110-DH = RAILWAY series relay, fixed equipment, with 4 CO gold-plated contacts, magnetic arc blow-out, 110Vdc coil and keying position DH										

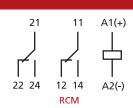
(1) ENERGY: all applications except for railway.

RAILWAYS, FIXED EQUIPMENT: application on fixed power systems and electrical railway traction.

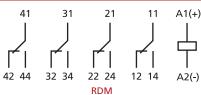
For list of RFI compliant and type-approved products, consult dedicated catalog "RAILWAY SERIES – RFI APPROVED".

M: PCB-mount models. Specifications as per "Energy" application but with output terminals suitable for soldering to PCB.

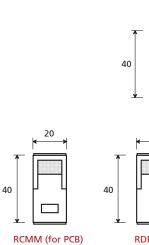
Also available is the STATIONS series, with ENEL approved material meeting LV15/LV16 specifications. For list of ENEL compliant and type-approved products,

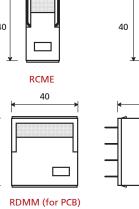

consult dedicated catalog "STATIONS SERIES – LV15-LV16-LV20"

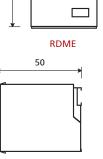
(2) Other values on request. Voltages 380V and 440V available as Vac only.


(3) Optional value.

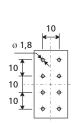
(4) Optional value. The positive mechanical keying is applied according to the manufacturer's model.

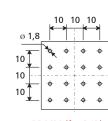



20

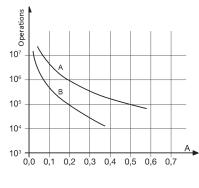


50


Dimensions



40


RCMM (for PCB)

Hole layout (from solder side)

RDMM (for PCB) Hole layout (from solder side)

Electrical life expectancy

Contact loading: 110 Vdc, L/R 40 ms Curve A : RCM.x6, RDM.x6 Curve B : RCM.x2, RDM.x2

RCM.12, RDM.12						
U	I (A)	L/R (ms)	Operations			
110Vdc	0.2	40	500,000			
220Vdc	0.2	10	80,000			
U	I (A)	cosφ	Operations			
110Vac	1	1	1,200,000			
110Vac	1	0.5	1,000,000			
110Vac	5	1	500,000			
110Vac	5	0.5	300,000			
220Vac	0.5	1	1,200,000			
220Vac	1	0.5	500,000			
220Vac	5	1	400,000			
220Vac	5	0.5	300,000			

Switching frequency: 1,200 operations/hour (*) = 600 operations/hour

RCM.16, RDM.16						
U	I (A)	L/R (ms)	Operations			
110Vdc	0.2	40	1,000,000			
110Vdc	0.5	40	150,000			
110Vdc	0.6	10	300,000			
110Vdc	1	10	100,000 (*)			
220Vdc	0.2	10	100,000			
U	I (A)	cosφ	Operations			
110Vac	1	1	2,000,000			
110Vac	1	0.5	1,500,000			
110Vac	5	1	950,000			
110Vac	5	0.5	500,000			
220Vac	0.5	1	2,000,000			
220Vac	1	0.5	800,000			
220Vac	5	1	600,000			
220Vac	5	0.5	500,000			

Sockets and retaining clips		RCM	RDM	Retaining clip
Type of installation	Type of outputs			
Wall or DIN H35 rail mounting	Screw	PAVC081	PAVD161 PAVD164	VM1821
Flush mounting	Double faston (4.8 × 0.8 mm)	PRDC081	-	-
	Screw	PRVC081	PRVD161	-
PCB-mount	Solder	PRCC081	PRCD161	-

Mounting tips

The preferred mounting position is on the wall, with the relay positioned horizontally in the reading direction on the nameplate. For correct use of the relays, they should be spaced apart by at least 5 mm in the horizontal direction and 20 mm in the vertical direction. This is to allow correct upward dissipation of the heat generated by the coil. Set these distances according to the socket used. Distances can be reduced depending on the environmental application conditions and on the relay duty cycle. No special maintenance is required. Condensation can form inside the relay when powered up and the outside ambient temperature is cold; this is quite normal and does not affect the operation of the relay. The plastic materials of the relay do not possess hygroscopic properties.

FRONT CONNECTION

NUMBERING EXPLANATION

USER SECTORS

RGM

PRODUCT ADVANTAGES _

- Plug-in monostable instantaneous relay
- Solid and rugged construction for heavy or intensive duty
- Very long electrical life expectancy and exceptional endurance
- Magnetic arc blow-out for higher breaking capacity
- Self-cleaning knurled contacts
- Lever for manual operation (optional)
- Fitted with mechanical optical contact status indicator as standard
- Operation using d.c. or a.c. power supply (directly, without rectifiers or diodes)
- Wide variety of configurations and customizations
- Also available in current-monitoring version
- Retaining clip for secure locking of relay on socket
- Transparent cover, pull-out handle
- Label holder in cover for customer's use
- Positive mechanical keying for relay and socket

DESCRIPTION .

The relays in the RGM series are highly reliable products providing top performance, suitable for applications in particularly harsh and unsettled environments, such as high voltage electricity distribution stations and medium voltage substations. The mechanical design of the relay is such as to allow the development of numerous custom solutions, in the event that the standard models do not fully respond to the required performance parameters. Thanks to its exceptional breaking capacity, the relay is suitable for controlling heavy duty loads with intensive switching frequency, where safety and continuity of operation are all-important. A product of proven reliability, as demonstrated by its use for over 40 years in electrical energy transmission and distribution systems, and fixed equipment used in the railway sector. Benefiting also from careful selection of materials, coupled with the technical and professional skills of human resources involved in design and production, this family of relays has found favour with many important and high profile customers..

Versatility in manufacture allows the production of relays with any voltage in the range 12 to 250VDC/440VAC, and with

a variety of operating ranges adaptable to different application requirements.

The contacts used are of a type designed to give notable levels of performance both with **high and strongly inductive DC loads**, and with particularly **low loads**; inclusion of the magnetic arc blow-out function (optional) helps to achieve a considerable increase in breaking capacity. Knurled contacts ensure not only better self-cleaning characteristics, but also lower ohmic resistance thanks to multiple points of electrical connection, thereby extending the electrical life expectancy of the component.

All models offer the facility of manual operation, so that tests can be performed even in the absence of electrical power. Like all our relays, models in the G series are assembled as part of a controlled manufacturing process in which **every step of production is verified** by the next step in succession. In effect, **each relay is calibrated and tested individually**, by hand, in such a way as to guarantee top reliability.

	Number of contacts	Magnetic arc blow-out	MONOSTABLE
RGM.x3	4		Ŭ M
RGM.x4	4 + 1NO		
RGM.x5	4 + 1NC		
RGM.x7	4	•	TANE
RGM.x8	4, long travel	•	NSTAN
-	RGM.x4 RGM.x5 RGM.x7	RGM.x3 4 RGM.x4 4 + 1NO RGM.x5 4 + 1NC RGM.x7 4	RGM.x3 4 RGM.x4 4 + 1NO RGM.x5 4 + 1NC RGM.x7 4

FOR CONFIGURATION OF THE PRODUCT CODE, SEE "ORDERING SCHEME" TABLE					
Coil specifications	RGMExy - RGMFxy RGMEx8				
Nominal voltages Un	DC: 12-24-48-110-125-132-144-220 ⁽¹⁾ - A	AC: 12-24-48-110-125-220-230-380-440 ⁽¹⁻²⁾			
Consumption at Un (DC/AC)	3W / 6.5VA ⁽³⁾ - 11.5VA ⁽⁴⁾	3.5W / 8VA ⁽³⁾ - 13VA ⁽⁴⁾			
Operating range	DC: 80120 % Un -AC : 85110 % Un				
Type of duty	Continuous				
Drop-out voltage ⁽⁵⁾	DC: > 5% Un -	AC : > 15% Un			

(1) Other values on request.

(2) 380V 50Hz, 440V 60Hz.

(3) In operation.
(4) On pick-up.
(5) Limit value for supply voltage, expressed as % of the nominal value, beneath which the relay is certain to be de-energized.

Contact specif	fications									Б
	Number and type	<u> </u>			4 CO,	form C				TIMIT
Current	Nominal ⁽¹⁾				12	A ⁽²⁾				
	Maximum peak ⁽²⁾	1		Ţ	20A for 1mir	n - 40A for 1s	s			Ţ
	Maximum pulse ⁽²⁾				150A fe	or 10ms				TIW Y
Example of e	electrical life expectancy ⁽⁴⁾	RGM.x4-x5			: 0.2 A - 110 V L/R 40 ms - 10	/dc - L/R 40 ms - 105 operation	- 105 operatior ns- 1,800 oper	ns - 1,800 opera erations/hour	ations/hour	TIME DELA
Minimum load	d Standard contacts				200mW (1	10V, 10mA)				
	Gold-plated contacts		50mW (5V, 5mA)							
Ma	aximum breaking voltage				350 VDC	/ 440 VAC				
	Contact material				Agʻ	CdO				
		RGM.13-17-43-47	RGM. 33-37-63-67	RGM.18	RGM.38	RGM.14-44	RGM. 34-64	RGM. 15-45	RGM. 35-65	
perating time at	it Un (ms) ⁽⁵⁾	DC - AC	DC	DC - AC	DC	DC - AC	DC	DC - AC	DC	t
	Pick-up (NC contact opening)	≤ 20 - ≤ 11	≤ 20	≤ 20 - ≤11	≤ 20	≤ 16 - ≤ 11	≤ 16	≤ 16 - ≤11	≤16	
	Pick-up (NO contact closing)	≤ 35 - ≤ 30	≤ 35	≤ 40 - ≤35	≤ 4 0	$\leq 35 - \leq 30$	≤ 35	≤ 35 - ≤30	≤35	Ŭ
Dr	rop-out (NO contact opening)	≤ 10 - ≤ 20	≤ 47	≤ 10 - ≤20	≤ 47	≤ 10 - ≤ 25	≤ 47	≤ 10 - ≤25	≤ 47	
	Drop-out (NC contact closing)	≤ 53 - ≤ 65	≤ 85	≤ 60 - ≤70	≤ 95	≤ 70 - ≤ 75	≤ 100	≤ 70 - ≤75	≤ 100	
Pir	Pick-up (NC auxiliary contact opening)	- '	_ !	-	i -	- '	-	≤ 16 - ≤12	≤ 20	
P	Pick-up (NO auxiliary contact closing)	- '	- !	-	-	\leq 33 - \leq 25	≤ 33	-	-	
Drop	op-out (NO auxiliary contact opening)	- '	_ !	-	i -	\leq 30 - \leq 45	≤ 4 6	-	-	
Dror	p-out (NC auxiliary contact opening)	- '	_ !	i - I	i –	- '		≤ 70 - ≤75	≤ 95	

(1) On all contacts simultaneously, reduction of 30%.

(2) Models RGM.x4 / RGM.x5 only: 5° NO or NC contact: nominal current 5 A.

(3) Maximum peak and pulse currents are those currents that can be handled, for a specified time, by the contact. They do not refer to steady or interrupted currents.
(4) For other examples, see electrical life expectancy curves.
(5) Unless specified otherwise, the operating time signifies until stabilization of the contact (including bounces).

	1 A A A A A A A A A A A A A A A A A A A
47	Insulation
	mound

Insulation resistance (at 500Vdc)	
between electrically independent circuits and between these circuits and ground	> 10,000 MΩ
between open contact parts	> 10,000 ΜΩ
Withstand voltage at industrial frequency	
between electrically independent circuits and between these circuits and ground	2 kV (1 min) - 2.2 kV (1 s)
between open contact parts	2 kV (1 min) - 2.2 kV (1 s) ⁽¹⁾
between adjacent contacts	2 kV (1 min) - 2.2 kV (1 s)
Impulse withstand voltage (1.2/50µs - 0.5J)	
between electrically independent circuits	5 kV (2)
and between these circuits and ground	5 kV (2)

For auxiliary contacts (NO - NC) of models RGM.x4 and RGM.x5: (1) 1kV.

(2) 2kV.

27

BACK CONNECTION

PCB MOUNT

Ø	Mechanical specifications		
		Mechanical life expectancy	20 x 10 ⁶ operations
	Maximum switching rate	Mechanical	3,600 operations/hour
		Protection	IP40
		Dimensions (mm)	45x50x86 ⁽¹⁾
		Weight (g)	270

(1) Excluding output terminals

Environmental specifications Operating temperature -25 to +55 °C Storage and shipping temperature -25 to +70°C Relative humidity Standard: 75% RH - Tropicalized: 95% RH Fire behavior V0

Standards and reference values						
EN 61810-1, EN 61810-2, EN 61810-7	Electromechanical elementary relays					
EN 60695-2-10	Fire behavior					
EN 61000	Electromagnetic compatibility					
EN 60529	Degree of protection provided by enclosures					

Unless otherwise specified, products are designed and manufactured according to the requirements of the European and International standards indicated above. In accordance with EN 61810-1, all items of technical data are referred to ambient temperature 23 °C, atmospheric pressure 96kPa and 50% humidity. Tolerance for coil resistance, nominal electrical input and nominal power is ±7%.

-	Configurations - Options	
	TROPICALIZATION	Surface treatment of coil with protective coating for use in conditions of RH 95%.
	GOLD PLATING	Surface treatment of contacts, blades and output terminals with gold-cobalt alloy, thickness $\geq 2\mu$. This treatment ensures long-term capacity of the contact to conduct lower currents.
	LED	LED indicator showing presence of power supply, wired in parallel with the coil, as alternative to mechanical optical indicator.
	FLYBACK DIODE	Component connected in parallel with the coil (type 1N4007) designed to suppress overvoltages generated by the coil when de-energized.
	LEVER FOR MANUAL OPERATION	Allows manual operation of the relay, with the cover closed, using a screwdriver. If the lever is fitted, there will be no luminous optical indicator

Ordering scheme

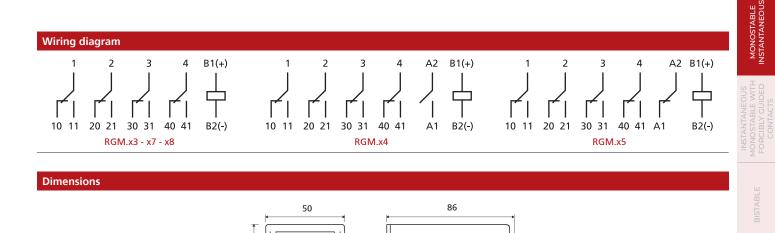
ordening scheme								
Product code	Application ⁽¹⁾	Configuration A	Configuration B	Label	Type of power supply	Nominal voltage (V) ⁽²⁾	Finish ⁽³⁾	Keying position code ⁽⁴⁾
RGM	E: Energy F: Railway Fixed Equipment	1: Standard 3: Diode // 4: Gold plating 5: Led 6: Gold plating + Diode // 7: Diode // + Led	3: 4 CO contracts 4: 4 CO contracts + 1 NO auxiliary contact 5: 4 CO contracts + 1 NC auxiliary contact 7: 4 CO contracts with magnetic arc blow-out 8: 4 CO contracts, long travel with magnetic arc blow-out	F	C: Vdc A: Vac 50 Hz H: Vac 60 Hz	012 - 024 - 048 110 - 125 - 132 144 - 220 - 230 380 - 440	T: Tropicalized coil M: Manual operation ⁵⁾	XXX

nple	RGM	RGM E 3 7 F C 048 TM								
	RGME37F-C048/TM = ENERGY series relay with flyback diode, magnetic arc blow-out, 48Vdc tropicalized coil and manual operating lever.									
RGM E 1 3 F					А	110		OOG		
		RGMF17	F-A110-OOG = RA	ILWAY series relay, fixed e	quipme	nt, with 110V 5	0Hz coil and key	ing position OO	G.	

(1) ENERGY: all applications except for railway.

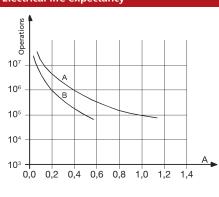
RAILWAYS, FIXED EQUIPMENT: application on fixed power systems and electrical railway traction. For list of RFI compliant and type-approved products, consult dedicated catalog "RAILWAY SERIES - RFI APPROVED".

Also available is the STATIONS series, with ENEL approved material meeting LV15/LV16 specifications. For list of ENEL compliant and type-approved products, consult dedicated catalog "STATIONS SERIES - LV15-LV16-LV20"


(2) Other values on request. Voltages 380V and 440V available as Vac only.

(3) Optional value. Multiple selection possible (e.g. TM).

(4) Optional value. Positive mechanical keying is applied according to the manufacturer's model.


(5) With manual operation, no optical indicator.

45

Contact loading: 110 Vdc, L/R 40 ms Curve A : RGM.x7 Curve B : RGM.x3-4-5(NO/NC contact excluded)

	RGM.x3 - R	GM.x4 - RGM.	κ5
U	I (A)	L/R (ms)	Operations
110 Vdc	0.5	40	100,000
110 Vdc	0.6	10	300,000
120 Vdc	0.7	40	50,000
125 Vdc	1.2	0	1,000,000
220 Vdc	0.1	40	100,000
220 Vdc	0.25	10	100,000
U	I (A)	cosφ	Operations
110 Vac	1	1	2,000,000
110 Vac	1	0.5	1,500,000
110 Vac	5	1	1,000,000
110 Vac	5	0.5	500,000
220 Vac	0.5	1	2,000,000
220 Vac	1	0.5	600,000
220 Vac	5	1	650,000
220 Vac	5	0.5	600,000

	RGM.x7					
U	I (A)	L/R (ms)	Operations			
24 Vdc	1	0	7,000,000			
24 Vdc	1	40	3,000,000			
24 Vdc	2	40	2,000,000			
24 Vdc	5	0	3,000,000			
24 Vdc	5	40	200,000			
24 Vdc	9	0	800,000			
48 Vdc	5	20	200,000			
110 Vdc	0.4	40	1,000,000			
110 Vdc	1	40	100,000			
110 Vdc	10	0	100,000			
U	I (A)	cosφ	Operations			
220 Vac	5	0.5	100,000			
220 Vac	10	1	100,000			
230 Vac	1	0.7	2,500,000			
230 Vac	3	0.7	1,200,000			

Switching frequency: 1,200 operations/hour

RGM.x8				
U	I (A)	L/R (ms)	Operations	
125 Vdc	1	40	1,000,000	
125 Vdc	5	40	5,000	

Sockets and retaining clips				
Type of installation	Type of outputs	Model	Retaining clip	
Wall or DIN rail mounting	Screw	PAVG161		
Flush mounting	Double faston (4.8 × 0.8 mm)	PRDG161	VM1221	
	Screw	PRVG161		

Mounting tips

The preferred mounting position is on the wall, with the relay positioned horizontally in the reading direction on the nameplate. For correct use of the relays, they should be spaced apart by at least 5 mm in the horizontal direction and 20 mm in the vertical direction. This is to allow correct upward dissipation of the heat generated by the coil. Set these distances according to the socket used. Distances can be reduced depending on the environmental application conditions and on the relay duty cycle. For safe and secure operation, it is advisable to use retaining clips.

No special maintenance is required.

Condensation can form inside the relay when powered up and the outside ambient temperature is cold; this is quite normal and does not affect the operation of the relay. The plastic materials of the relay do not possess hygroscopic properties.

BACK

FRONT

RMMX SERIES

USER SECTORS

RMM

PRODUCT ADVANTAGES _

- Plug-in monostable instantaneous relay
- Compact dimensions than RMM Series
- Solid and rugged construction for heavy or intensive duty
- Long electrical life expectancy and exceptional endurance
- Operation using d.c. or a.c. power supply (directly, without rectifiers or diodes)
- Magnetic arc blow-out (optional) for higher breaking capacity
- Self-cleaning knurled contacts
- Mechanical optical device (standard) or Led (optional for d.c. versions) indicating energized status of coil
- Transparent cover, with access for manual operation (standard) and pull-out handle
- Retaining clip for secure locking of relay on socket
- Positive mechanical keying for relay and socket

DESCRIPTION

RMMX relays line are derived from models in theRGMX line, offering the same specifications and performance and available with a generous number of contacts (8): in short, highly reliable products providing top performance and suitable for applications in particularly harsh and unsettled environments, such as high voltage electricity distribution stations and medium voltage substations. The mechanical design of the relay is such as to allow the development of **numerous custom solutions**, in the event that the standard models do not fully respond to the required performance parameters.

Thanks to its high breaking capacity, the relay is suitable for controlling **heavy duty loads** with intensive switching frequency, where safety and continuity of operation are all-important.

Versatility in manufacture allows the production of relays with any voltage between 12 and 250Vd.c./380Va.c.

Manual operation is specified for all models, allowing tests to be conducted in the absence of any power supply.

The contacts used are of a type designed to give top performance both with high and strongly inductive d.c. loads, and with particularly low loads; inclusion of the magnetic arc blow-out function (optional) helps to achieve a considerable **increase in breaking capacity**.

Knurled contacts ensure not only better self-cleaning characteristics, but also lower ohmic resistance thanks to multiple points of electrical connection, thereby extending the electrical life expectancy of the component.

Benefiting from careful selection of materials, plus the technical and professional skills of human resources involved in design and production, this is a product suitable for the most demanding of environments.

Like all our relays, these models are assembled as part of a controlled manufacturing process in which every step of production is verified by the next step in succession.

Each relay is calibrated and tested individually, by hand, so as to guarantee top reliability.

				TABLE
0	Model	Number of contacts	Magnetic arc blow-out	MONOS ⁻ INSTANTA
	RMM.x2X	8		-
	RMM.x6X	8	•	OUS WITH IDED

 \wedge

FOR CONFIGURATION OF PRODUCT CODE, SEE "ORDERING SCHEME" TABLE

Coil specifications	RMM.x2X-x6X
Nominal voltages Un	DC: 12-24-48-110-125-132-220 ⁽¹⁾ - AC: 12-24-48-110-125-230-380-440 ⁽¹⁻²⁾
Consumption at Un (DC/AC)	3W / 6.5 VA ⁽³⁾ - 11.5 VA ⁽⁴⁾
Operating range	DC: 80÷115% Un - AC: 85÷110% Un
Type of duty	Continuous
Drop-out voltage ⁽⁵⁾	DC: > 5% Un - AC : > 15% Un

(1) Other values on request.

(2) Maximum value, AC = 380V 50Hz - 440V 60Hz.

(3) In operation.

(4) On pick-up.

(5) Limit value for supply voltage, expressed as % of the nominal value, beneath which the relay is certain to be de-energized.

Х	RMM.32X-36X-52X-56X-62X-66X-72X-76X	RMM.12X-16X-42X-46X	ations	ontact specifica	
	, form C	8 CC	Number and type		
	10A		Nominal ⁽¹⁾	Current	
	iin - 40A for 1s	20A for 1n	Maximum peak (2)		
	for 10ms	1504	Maximum pulse ⁽²⁾		
	- 10 ⁵ operations - 1,800 operations/hour 10 ⁵ operations - 1,800 operations/hour		ctrical life expectancy ⁽³⁾	Example of elec	
	(10 V, 10 mA)	200 mW	Standard contacts	Minimum load	
	(5 V, 5 mA)	50 mW (5 V, 5 mA)			
	C / 440 VAC	350 VD	imum breaking voltage	Maxi	
	gCdO	Δ	Contact material		
	DC	DC - AC	ating time at Un (ms) (4)	Operating time at Un (ms) (4)	
	≤ 20	≤ 20 - ≤ 13	Pick-up (NC contact opening)	Pick-up (NC contact opening)	
	≤ 45	≤ 45 - ≤ 50	Pick-up (NO contact closing)	Pick-up (NO contact closing)	
	≤ 42	≤ 8 - ≤ 25	p-out (NO contact opening)	Drop	
	≤ 85	≤ 45 - ≤ 60	rop-out (NC contact closing)	Dr	

(1) On all contacts simultaneously, reduction of 30%.

 On all contacts simultaneously, reduction of 30%. Maximum peak and pulse currents are those currents that can be handled, for a specified time, by the cord of the contact life expectancy curves. On other examples, see electrical life expectancy curves. Unless specified otherwise, the operating time signifies until stabilization of the contact (including bounc 		
Insulation		
Insulation resistance (at 500VCD)		
between electrically independent circuits and between these circuits and ground	> 10,000 MΩ	
between open contact parts	> 10,000 MΩ	
Withstand voltage at industrial frequency		
between electrically independent circuits and between these circuits and ground	2 kV (1 min) - 2.2 kV (1 s)	
between open contact parts	2 kV (1 min) - 2.2 kV (1 s)	
between adjacent contacts	2 kV (1 min) - 2.2 kV (1 s)	
Impulse withstand voltage (1.2/50µs - 0.5J)		
between electrically independent circuits and between these circuits and ground	5 kV	
between open contact parts	5 kV	

CHAUVIN ARNOUX

ENERGY

Mechanical specifications	
Mechanical life expectancy	20x10 ⁶ operations
Maximum mechanical switching rate	3,600 operationss/h
Degree of protection	IP50 fitted to socket
Dimensions (mm)	45x90x100 ⁽¹⁾
Weight (g)	380

(1) Exludind output terminal

Environmental specifications	
Operating temperature	-25 ÷ +55°C
Storage and shipping temperature	-25 ÷ +70°C
Relative humidity	Standard: 75% RH - Tropicalized: 95% RH
Fire behavior	V0

a	Standards and reference values	
	EN 61810-1, EN 61810-2, EN 61810-7	All-or-nothing relays
	EN 60695-2-10	Fire behavior
	EN 60529	Degree of protection provided by enclosures

Unless otherwise specified, products are designed and manufactured to the requirements of the European and International standards indicated above. In accordance with EN 61810-1, all items of technical data are referred to ambient temperature 23 °C, atmospheric pressure 96kPa and 50% humidity. Tolerance for coil resistance, nominal electrical input and nominal power is ±7%.

Configurations - Options	
TROPICALIZATION	Surface treatment of coil with protective coating for use in conditions of RH 95%. This treatment serves to give the coil added protection against corrosion that could occur as a result of moisture reacting with certain chemical agents such as those found in acid or saline atmospheres.
GOLD PLATING	Surface treatment of contacts, blades and output terminals with gold, thickness $\geq 2\mu$. This treatment ensures long-term capacity of the contact to conduct low levels of current, even in adverse ambient conditions.
LED	Luminous indicator showing presence of power supply, wired in parallel with the coil, as alternative to mechanical optical indicator.
FLYBACK DIODE	Component connected in parallel with the coil designed to suppress overvoltages generated by the coil when de-energized.

Ë	Ordering scheme								
	Product code	Application ⁽¹⁾	Configuration A	Configuration B	Label	Type of power supply	Nominal voltage (V) ⁽²⁾	Finish ⁽³⁾	Keying position code ⁽⁴⁾
	RMM	E: Energy F: Railway Fixed Equipment	1: Standard 3: Diode // 4: Gold plating 5: Led 6: Gold plating + Diode // 7: Diode // + Led	 2X: 8 CO contacts 6X: 8 CO contacts with magnetic arc blowout 	F	C : Vdc A: Vac 50 Hz H: Vac 60 Hz	012 - 024 - 048 110 - 125 - 132 220 - 230 - 380 440	T: Tropicalized coil	хх

zample	RMM	RMM E 4 6X F A 024									
	RMME46XF-A024 = ENERGY series relay with 8 gold-plated contacts, magnetic arc blow-out and 24Vac coil.										
	RMM F 1 2X F C 110 T										
	RMMF12XF-C110/T = Standard RAILWAY series relay with 8 contacts and 110Vdc tropicalized coil.										

(1) ENERGY : all applications except for railway.

RAILWAYS, FIXED EQUIPMENT: application on fixed power systems and electrical railway traction. For list of RFI compliant and type-approved products, consult dedicated catalog "RAILWAY SERIES – RFI APPROVED".

Also available is the **STATIONS** series, with ENEL approved material meeting LV15/LV16 specifications. For list of ENEL compliant and type-approved products, consult dedicated catalog "STATIONS SERIES – LV15-LV16-LV20".

(2) Other values on request. Voltages 380V and 440V available as Vac only.

(3) (4) Optional value. Positive mechanical keying is applied according to the manufacturer's product model.

Dimensions

(*) access to the manual operating lever

Electrical life expectancy

Operations

10

10^e

10⁵

104

10

0.0

0.2 0.4

Curve A: RMM.x6X

Curve B: RMM.x2X

0.6 0.8

Contact loading: 110Vdc, L/R 40

1.0 1.2 1.4

81

82 84

45

71

72 74

61

62 64

90

U

110 Vdc

110 Vdc

120 Vdc

125 Vdc

220 Vdc

220 Vdc

U

110 Vac

110 Vac

110 Vac

110 Vac

41

42 44

10

31

32 34

21

22 24

11

12 14

100

U

24 Vdc

24 Vdc

24 Vdc

24 Vdc

24 Vdc

24 Vdc

48 Vdc

110 Vdc

110 Vdc

110 Vdc

U

220 Vac

220 Vac

230 Vac

230 Vac

A1(+)

A2(-)

RMM.x6X

L/R (ms)

0

40

40

0

40

0

20

40

40

0

cosφ

0.5

1

0.7

0.7

Operations

7,000,000

3,000,000

2,000,000

3,000,000

200,000

800,000

200,000

1,000,000

100,000

100,000

Operations

I (A)

1

1

2

5

5

9

5

0.4

1

10

I (A)

5

10

1

3

51

52 54

ᄓ

כו

RMM.x2X

L/R (ms)

40

10

40

0

40

10

cosφ

1

0.5

1

05

Operations

1,000,000

300,000

50,000

1,000,000

100,000

100,000

Operations

2,000,000

1,500,000

1,000,000

500 000

I (A)

0.5

0.6

0.7

1.2

0.1

0.25

I (A)

1

1

5

5

MONOSTABLE VSTANTANEOUS

100,000 100,000 2,500,000 1,200,000

	TTU Vac	5	0.5	500,000
) ms	220 Vac	0.5	1	2,000,000
	220 Vac	1	0.5	600,000
	220 Vac	5	1	650,000
	220 Vac	5	0.5	600,000
	Switching fre	equency: 1,20	0 operations/ho	our

Sockets and retaining clips Type of installation Type of outputs Modèle Retaining clip Screw 96IP20-I DIN Wall or DIN rail mounting PAIR320 Retaining clip RMC48 Double faston (4.8 × 0.8 mm) ADF4 Flush mounting Retaining clip PRIR320

Mounting tips

The preferred mounting position is on the wall, with the relay positioned horizontally in the reading direction on the nameplate. To ensure correct use of the relays, they should be spaced apart by at least 20 mm in the vertical; this will allow the heat generated by the coils to rise and dissipate as necessary. Check the distances according to the socket used. Distances can be reduced depending on the environmental application conditions and on the relay duty cycle.

Retaining clips are used to ensure that the relay is secured correctly to the socket.

No special maintenance is required.

Condensation can form inside the relay when powered up and the outside ambient temperature is cold; this is quite normal and does not affect the operation of the relay. The plastic materials of the relay do not possess hygroscopic properties.

RMM SERIES

USER SECTORS

PRODUCT ADVANTAGES __

- Plug-in monostable instantaneous relay
- Compact dimensions than RMM Series
- Solid and rugged construction for heavy or intensive duty
- Long electrical life expectancy and exceptional endurance
- Operation using d.c. or a.c. power supply (directly, without rectifiers or diodes)
- Magnetic arc blow-out (optional) for higher breaking capacity
- Self-cleaning knurled contacts
- Operation using d.c. or a.c. power supply
- Transparent cover, with access for manual operation (standard) and pull-out handle
- Retaining clip for secure locking of relay on socket
- Positive mechanical keying for relay and socket

DESCRIPTION __

Relays of the **RMM series** are monostable multipole types with 8, 12 and 20 change-over contacts. RMM relays share the same basic mechanical design as those of the RGM series, and offer the same specifications and performance.

These are highly reliable products providing top performance, suitable for applications in particularly harsh and unsettled environments, such as high voltage electricity distribution stations and medium voltage substations. The mechanical design of the relay is such as to allow the development of numerous custom solutions, in the event that the standard models do not fully respond to the required performance parameters. Thanks to its exceptional breaking capacity, the relay is suitable for controlling heavy duty loads with intensive switching frequency, where safety and continuity of operation are all-important. A product of proven reliability, as demonstrated by its use for over **40 years** in electrical energy transport and distribution systems, and fixed equipment used in the railway sector.

Benefiting also from careful selection of materials, coupled with the technical and professional skills of human resources involved in design and production, this family of relays has found favor with many important and high profile customers.

Versatility in manufacture allows the production of relays with any voltage in the range 12 to 250VDC/440VAC, and with a variety of operating ranges adaptable to different application requirements. The contacts used are of a type designed to give good levels of performance both with high and strongly inductive d.c. loads, and with particularly low loads. Inclusion of the magnetic arc blow-out function (optional) helps to achieve a considerable increase in breaking capacity, whilst the knurled contacts ensure not only better self-cleaning characteristics, but also lower ohmic resistance thanks to multiple points of electrical connection, thereby extending the electrical life expectancy of the component. All models offer the facility of manual operation, so that tests can be performed even in the absence of electrical power. To ensure that the relay remains firmly anchored to the sockets, these are equipped with fixing screws, so that there is no need for the use of retaining clips.

Like all AMRA relays, models of the RMM series are assembled as part of a controlled manufacturing process in which every step of production is verified by the next step in succession. In effect, each relay is calibrated and tested individually, by hand, in such a way as to guarantee the maximum level of reliability possible.

Models	Number of contacts	Magnetic arc blow-out	MONOST
	8		MOMINST
RMM.x6	8	•	иEO
RMM.x3	12		NEOUS SLE WITH GUIDED
RMM.x7	12	•	
RMM.x4	20		ISTAN ^T NOST, RCIBL
RMM.x8	20	•	FORG

 \wedge

FOR CONFIGURATION OF PRODUCT CODE, SEE "ORDERING SCHEME" TABLE

O Coil specifications	RMM.x2-x6	RMM.x3-x4-x7-x8	
Nominal voltages Un	DC: 12-24-48-110-125-132-144-220 ⁽¹⁾ -	AC: 12-24-48-110-125-220-230-380-440 (1-2)	
Consumption at Un (DC/AC)	3 W / 6.5 VA ⁽³⁾ - 11.5 VA ⁽⁴⁾	6 W / 15 VA ⁽³⁾ - 25 VA ⁽⁴⁾	
Operating range	DC: 80120% Un	AC: 85110% Un	
Type of duty Continuous	Continious		
Drop-out voltage ⁽⁵⁾	DC: > 5% Un - AC: > 15% Un		

(1) Other values on request.

(2) Maximum value, a.c. = 380V 50Hz - 440V 60Hz.

(3) In operation.
(4) On pick-up.
(5) Limit value for supply voltage, expressed as % of the nominal value, beneath which the relay is certain to be de-energized.

4

Contact specifications							HTIW
Number and type		8 - 12 - 20 CO, form C					
Current Nominal (1)	10A					TIME DELAY	
Maximum peak ⁽²⁾			20A for 1mir	n - 40A for 1s			μD
Maximum pulse ⁽²⁾	(2) 150A for 10ms				Ě		
Example of electrical life expectancy ⁽³⁾			10Vdc - L/R 40ms) Vdc - L/R 40ms ·				
Minimum load Standard contacts	200 mW (10 V, 10 mA)						
Gold-plated contacts	50 mW (5 V, 5 mA)						
Maximum drop-out voltage	350 VDC / 440 VAC						
Contact material	AgCdO						
Operating time at Un (ms) ⁽⁴⁾	RMM. 12-16-42-46	RMM. 13-17-43-47	RMM. 14-18-44-48	RMM. 32-36-62-66	RMM. 33-37-63-67	RMM. 34-38-64-68	SOCKET
	DC - AC	DC - AC	DC - AC	DC	DC	DC	SO
Pick-up (NC contact opening)	≤ 15 - ≤ 10	≤ 13 - ≤ 10	\leq 14 - \leq 10	≤ 15	≤ 13	≤ 14	
Pick-up (NO contact closing)	$\leq 40 - \leq 32$	≤ 37 - ≤ 35	$\leq 45 - \leq 35$	≤ 40	≤ 37	≤ 40	
Drop-out (NO contact opening)	\leq 12 - \leq 30	\leq 12 - \leq 30	$\leq 8 - \leq 35$	≤ 104	≤ 31	≤ 35	
Drop-out (NC contact closing)	≤ 64 - ≤ 110	$\leq 70 - \leq 80$	≤ 42 - ≤ 73	≤ 150	≤ 80	≤ 75	Ę

(1) On all contacts simultaneously, reduction of 30%.

(2) Maximum peak and pulse currents are those currents that can be handled, for a specified time, by the contact. They do not refer to steady or interrupted currents.

(3) For other examples, see electrical life expectancy curves.

(4) Unless specified otherwise, operating times are understood as comprising stabilization of the contact (inclusive of bounces).

f Insulation		BACK
Insulation resistance (at 500Vdc) between electrically independent circuits and between these circuits and ground	> 10.000 MΩ	00
between open contact parts Withstand voltage at industrial frequency	> 10,000 MΩ	H-7
between electrically independent circuits and between these circuits and ground between open contact parts between adjacent contacts	2 kV (1 min) - 2.2 kV (1 s) 2 kV (1 min) - 2.2 kV (1 s) 2 kV (1 min) - 2.2 kV (1 s)	PCB MOUNT
Impulse withstand voltage (1.2/50µs - 0.5J) between electrically independent circuits and between these circuits and ground between open contact parts	5 kV 5 kV	NG CLIPS

ABLE NEOUS

Mechanical specifications		RMM.x2-x6	RMM.x3-x7	RMM.x4-x8	\$
	Mechanical life expectancy		20x10 ⁶ operations		
Maximum switching rate	Mechanical		3,600 operations/hour		
Degree of protection			IP40		
	Dimensions (mm)	132x58x84 ⁽¹⁾	188x58x84 ⁽¹⁾	300x58x84 ⁽¹⁾	
	Weight (g)	430	720	1100	

(1) Excluding output terminals

Environmental specifications		
Operating temperature	-25 to 55°C	
Storage and shipping temperature	-25 to 70°C	
Relative humidity	Standard: 75% RH - Tropicalized: 95% RH	
Fire behavior	V0	

Standards and reference values		
EN 61810-1, EN 61810-2, EN 61810-7	Electromechanical elementary relays	
EN 60695-2-10	Fire behavior	
EN 61000	Electromagnetic compatibility	
EN 60529	Degree of protection provided by enclosures	

Unless otherwise specified, products are designed and manufactured according to the requirements of the European and International standards indicated above. In accordance with EN 61810-1, all items of technical data are referred to ambient temperature 23 °C, atmospheric pressure 96kPa and 50% humidity. Tolerance for coil resistance, nominal electrical input and nominal power is ±7%.

Configurations - Options	
TROPICALIZATION	Surface treatment of the coil with protective coating for use with RH 95%.
GOLD PLATING	Surface treatment of contacts, blades and output terminals with gold-cobalt, thickness $\geq 2\mu$. This treatment ensures long-term capacity of the contact to conduct lower currents.
LED	Luminous indicator showing presence of power supply, wired in parallel with the coil, as alternative to mechanical optical indicator.
FLYBACK DIODE	Component connected in parallel with the coil (type 1N4007) designed to suppress overvoltages generated by the coil when de-energized.
LEVER FOR MANUAL OPERATION	Allows manual operation of the relay, with the cover closed, using a screwdriver.

Ordering scheme								
Code produit	Application ⁽¹⁾	Configuration A	Configuration B	Label	Type of power supply	Nominal voltage (V) ⁽²⁾	Finish ⁽³⁾	Keying position code (4)
RMM	E: Energy F: Railway Fixed Equipment	1: Standard 3: Diode // 4: Gold plating 5: Led 6: Gold plating + Diode // 7: Diode // + Led	 2: 8 CO contacts 3: 12 CO contacts 4: 20 CO contacts 6: 8 CO contacts with magnetic arc blow-out 7: 12 CO contacts with magnetic arc blow-out 8: 20 CO contacts with magnetic arc blow-out 	F	C: Vdc A: Vac 50 Hz H: Vac 60 Hz	012 - 024 - 048 110 - 125 - 132 144 - 220 - 230 380 - 440	T: Tropicalized coil M: Manual operation ⁽⁵⁾	xxx

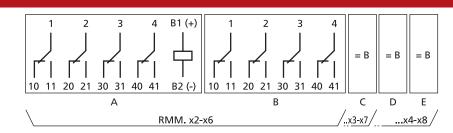
Ð
d
Ξ
g
ŵ

	RMM	E	4	7	F	Α	024	М	
nple	RMME47F-A024/M = ENERGY series relay with 20 gold-plated contacts, magnetic arc blow-out, 24Vac coil and manual operating lever.								
Exar	RMM	F	1	3	F	С	110	т	
-	RMMF13F-C110/T = RAILWAY series relay, fixed equipment, 12 contacts with 110Vdc tropicalized coil.								

(1) ENERGY : all applications except for railway.

RAILWAYS, FIXED EQUIPMENT: application on fixed power systems and electrical railway traction. For list of RFI compliant and type-approved products, consult dedicated catalog "RAILWAY SERIES - RFI APPROVED".

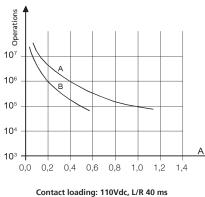
Also available is the STATIONS series, with ENEL approved material meeting LV15/LV16 specifications. For list of ENEL compliant and type-approved products, consult dedicated catalog "STATIONS SERIES - LV15-LV16-LV20".


(2) Other values on request. Voltages 380V and 440V available as Vac only.

(3) Optional value. Multiple selection possible (e.g. TM).

(4) Optional value. Positive mechanical keying is applied according to the manufacturer's product model.

(5) With manual operation, no optical indicator.



Dimensions 132 188 84 Ο 0 45 58 m ጠ I * RMM.x2 - RMM.x6 RMM.x3 - RMM.x7 300 0 45 ወ

RMM.x4 - RMM.x8

(*) Models with manual operating lever (optional) are provided with a hole at the front giving access to the lever. The position of the data plate holder and the mechanical optical indicator can vary depending on the version.

Electrical life expectancy

Curve A: RMM.x6-7-8 Curve B: RMM.x2-3-4

RMM.x2 - RMM.x3 - RMM.x4					
U	I (A)	L/R (ms)	Operations		
110 Vdc	0.5	40	100,000		
110 Vdc	0.6	10	300,000		
120 Vdc	0.7	40	50,000		
125 Vdc	1.2	0	1,000,000		
220 Vdc	0.1	40	100,000		
220 Vdc	0.25	10	100,000		
U	I (A)	cosφ	Operations		
110 Vac	1	1	2,000,000		
110 Vac	1	0.5	1,500,000		
110 Vac	5	1	1,000,000		
110 Vac	5	0.5	500,000		
220 Vac	0.5	1	2,000,000		
220 Vac	1	0.5	600,000		
220 Vac	5	1	650,000		
220 Vac	5	0.5	600,000		

Sockets		RMM.x2-x6	RMM.x3-x7	RMM.x4-x8
Type of installation	Type of outputs			
Wall or DIN H35 rail mounting	Screw	PAVM321	PAVM481	PAVM801
Flush mounting	Double faston (4.8 × 0.8 mm)	PRDM321	PRDM481	PRDM801
	Screw	PRVM321	PRVM481	PRVM801

Mounting tips

The preferred mounting position is on the wall, with the relay positioned horizontally in the reading direction on the nameplate. For correct use of the relays, they should be spaced apart by at least 20 mm in the vertical direction. This is to allow correct upward dissipation of the heat generated by the coil. Set these distances according to the socket used. Distances can be reduced depending on the environmental conditions during operation, and on the relay duty cycle.

Retaining clips are not required, as a secure connection is guaranteed by the fixing screws. These same screws also serve to facilitate installation and removal of the relay. To ensure correct use, the screws must be tightened / loosened in alternating sequence, by degrees. No special maintenance is required.

Condensation can form inside the relay when powered up and the outside ambient temperature is cold; this is quite normal and does not affect the operation of the relay. The plastic materials of the relay do not possess hygroscopic properties.

MONOSTABLE INSTANTANEOUS

> INSTANTANEOUS MONOSTABLE WIT FORCIBLY GUIDED

> > BISTABLE

FAST-ACTING (MONOSTABLE AND BISTABLE

IME DELAY DN PICK-UP DROP-OUT)

CTS

FORCIBLY CONT

RMM.x6 - RMM.x7 - RMM.x8

L/R (ms)

0

40

40

0

40

0

20

40

40

0

cosφ

05

1

0.7

0.7

Operations

7,000,000

3,000,000

2,000,000

3.000.000

200.000

800.000

200.000

1,000,000

100,000

100.000

Operations

100 000

100,000

2,500,000

1,200,000

I (A)

1

1 2

5

5

9

5

0.4

1

10

I (A)

5

10

1

3

U

24 Vdc

24 Vdc

24 Vdc

24 Vdc

24 Vdc

24 Vdc

48 Vdc

110 Vdc

110 Vdc

110 Vdc

U

220 Vac

220 Vac

230 Vac

230 Vac

SUREMEN

FRONT

37

POK SERIES

РОК

TRIPOK

QUADRIPOK

PRODUCT ADVANTAGES _

- Compact plug-in monostable instantaneous relays
- Solid and rugged construction for heavy or intensive duty
- Long life expectancy
- Independent and self-cleaning contacts
- Separate arc breaking chambers
- Magnetic arc blow-out standard
- Excellent shock and vibration resistance
- Option for use in geothermal sites available
- Also available in current-monitoring version
- Also available in PCB-mount version
- Wide variety of configurations and customizations
- Wide range of sockets
- Retaining clip for secure locking of relay on socket
- Transparent cover, pull-out handle
- Positive mechanical keying for relay and socket

DESCRIPTION .

The POK series is made up of 5 basic models, created from a single module with 2 contacts that can be used in multiple combinations to provide solutions with 2 - 4 - 6 - 8 and 12 change-over contacts.

The construction of the relays and careful choice of the materials are such that they ensure long life and considerable ruggedness even in harsh operating environments and in the presence of strong temperature fluctuations.

A specific treatment (P5GEO or P6GEO) combining coil tropicalization with gold-plated contacts allows the use of these items in geothermal electric power stations, as relays for signalling functions, for controlling intermediate devices and for all non-power circuits.

Excellent electrical and mechanical performance levels allow the product to be used in the most demanding of sectors such as, for example, control and signalling functions in electricity generating stations, electrical transformer stations, rail transport or in industries with continuous production processes (chemical industry, petroleum industry, rolling mills, cement factories, etc.).

Above all, the excellent ability to withstand shock and vibration allow their use on rolling stock.

Safe and reliable operation is guaranteed by:

- Contact terminals without connecting braids and soldered joints. The terminals connecting with the socket are provided by a direct extension of the contacts.
- Mechanism without return springs.
- Adoption of all-metallic operating mechanism, unaffected by the thermal ageing that typically degrades organic materials, such as plastics.
- Excellent shock and vibration resistance.
- Notable resistance to high operating temperatures and high thermal shocks.

The self-cleaning contacts are independent, being anchored neither one to another nor to a common operating mechanism. Positioned in separate chambers, they enable better breaking of the arc.

In addition, they are equipped with **magnetic arc blowout**, guaranteeing a particularly efficient break of direct current loads. The common contact is mounted to a separate returndevice, consisting in a flexible blade designed to ensure uniformity of the pressures on break contacts. Given their dimensions and specifications, POK relays provide the logical complement to power relays of the OK series.

				MONOSTABLE INSTANTANEOUS
Models	Number of contacts	Nominal current	Rolling stock application	NOS'
POK	2	5 A	•	DM
POKS	2	10 A	•	- SU H CI
BIPOK	4	5 A	•	
BIPOKS	6 4	10 A	•	TABLE TABLE
TRIPOK	6	5 A	•	INOS1 RCIB
TRIPOKS	6	10 A	•	MON
QUADRIPOKS	8	10 A	•	
ESAPOKS	12	10 A		ШШ

⚠

FOR CONFIGURATION OF PRODUCT CODE, SEE "ORDERING SCHEME" TABLE

Coil specifications	POK - POKS	BIPOK - BIPOKS	TRIPOK - TRIPOKS	QUADRIPOKS	ESAPOKS
Nominal voltages Un (1)	DC: 12-24	-36-48-72-96-110-12	25-132-144-220 A	C : 12-24-48-110-12	7-220-230
Max. consumption at Un (DC/AC)	2.5 W / 3.5 VA	3W / 4 VA	3.5 W / 5.5 VA	6 W / 8 VA	7 W / 11 VA
Operating range ⁽¹⁾	e ⁽¹⁾ DC: 80115% Un AC: 85110% Un				
Rolling stock version $^{(2)}$ (3)	rsion ^{(2) (3)} DC : 70125% Un				
Type of duty	of duty Continuous				
Drop-out voltage ⁽⁴⁾		DC: > 5	5% Un AC: > 1	5% Un	

1. Other values on request. For ESAPOKS, values > 24V.

2. See "Ordering scheme" table for order code.

3. For operating ranges different to that specified by EN60077, refer to table "Railways, rolling stock - Special operating ranges".

4. Limit value for supply voltage, expressed as % of the nominal value, beneath which the relay is certainly de-energized.

Contact specifications	POK - POKS	BIPOK - BIPOKS	TRIPOK -	TRIPOKS	QUADRIPOKS	ESAPOKS
Number and type	2 CO,form C	4 CO,form C	6 CO,1	form C	8 CO,form C	12 CO,form C
	POK -	BIPOK - TRIPOK		POKS - BIPOKS - TRIPOKS - QUADRIPOKS - ESAPOKS		ADRIPOKS - ESAPOKS
Current Nominal (1)		5 A		10 A		
Maximum peak (1 min) ⁽²⁾		10 A		20 A		
Maximum pulse (10 ms) ⁽²⁾		100 A			150 A	
Example of electrical life expectancy ⁽³⁾	0.2 A – 110 Vdc – L/R 40 ms: 10⁵ operations		0.5 A – 110 Vdc – L/R 40 ms: 10 ⁵ operations			
1800 operations/h	0.7 A – 110 Vdc – L/R 0 ms: 10 ⁵ operations			1 A – 110 Vdc – L/R 0 ms: 10 ⁵ operations		
Minimum load Standard contacts	500 mW (20 V, 20 mA)					
Gold-plated contact P4GEO (4)	100 mW (10 V, 5 mA)					
Gold-plated contact P8 ⁽⁴⁾	50 mW (5 V, 5 mA)					
Maximum breaking voltage	250 Vdc / 350 Vac					
Contact material	AgCu			Ag / AgCu		
Operating time at Un (ms) ^{(5) (6)}			DC -	– AC		
Pick-up (NO contact closing)	\leq 20 - \leq 20	≤ 25 - ≤ 25	≤ 25 ·	- ≤ 25	≤ 25 - ≤ 25	≤ 25 - ≤ 25
Drop-out (NC contact closing)	≤ 15 - ≤ 20	≤ 20 - ≤ 40	< 20	≤ 45	≤ 20 - ≤ 40	≤ 20 - ≤ 45

1. On all contacts simultaneously, reduction of 30%.

2. The max. peak and pulse currents are those currents that can be handled, for a specified time, by the contact. They do not refer to steady or interrupted currents.

3. For other values, see electrical life expectancy curves.

4. Specifications of contacts on new relay a. Plating material: P4GEO: gold-nickel alloy (>6µ)

P8 : gold-cobalt alloy (>5µ), knurled contact

b. When the gold-plated contact is subject to heavy loads, it will be degraded on the surface. In this case, the characteristics of the standard contact should be taken into consideration. This does not impair relay operation. 5. Unless specified otherwise, the operating time signifies until stabilization of the contact (including bounces).

6. Addition of a flyback diode connected in parallel with the coil (DC version only) causes an increase in operating time when the relay drops out.

Insulation resistance (at 500 Vdc) between electrically independent circuits and between these circuits and ground between open contact parts	> 1,000 ΜΩ > 1.000 ΜΩ	B MOUNT
Withstand voltage at industrial frequency between electrically independent circuits and between these circuits and ground	, , , , , , , , ,	DCB
between open contact parts between adjacent contacts	2 kV (1 min) - 2.2 kV (1 s) 1 kV (1 min) - 1.1 kV (1 s)	CLPS
Impulse withstand voltage (1.2/50µs - 0.5J) between electrically independent circuits and between these circuits and ground	2.5 kV (1 min) - 3 kV (1 s) 5 kV	RETAINING C
between open contact parts	5 kV 3 kV	

39

CHAUVIN ARNOUX

ENERG

	meenamear specificati	0113				
		Mech	nanical life expectancy	DC: 20 x 10 ⁶ AC: 10 x 10 ⁶ operations		
_	Maximum switching rate Mechanical			3,600 operations / hour		
	Degree of protection (with relay mounted)			IP40		
	POK-POKS BIPOK-BIPOKS		TRIPOK-TRIPOKS	QUADRIPOKS	ESAPOKS	
-	Dimensions (mm) ⁽¹⁾ Weight (g)	20 x 50 x 45 ~ 90	40 x 50 x 45 ~ 170	60 x 50 x 45 ~ 250	80 x 61 x 45 ~ 340	120 x 50 x 45 ~ 520

1. Excluding output terminals

Environmental specifications

· ·		
Operating temperature Storage and shipping temperatu Relative humidity Resistance to vibrations Resistance to shock Fire behavior	Standard Version for railways, rolling stock ure	-25° to +55°C -25° to +70°C -50° to +85°C Standard: 75% RH - Tropicalized: 95% RH 5 g - 10 to 55 Hz - 1 min 20 g - 11 ms V0

Q	Standards and reference values					
	EN 61810-1, EN 61810-2, EN 61810-7	Electromechanical elementary relays				
	EN 60695-2-10	Fire behavior				
	EN 61000	Electromagnetic compatibility				
	EN 60529	Degree of protection provided by enclosures				

Unless otherwise specified, the products are designed and manufactured according to the requirements of the above-mentioned European and International standards. In accordance with EN 61810-1, all items of technical data are referred to ambient temperature 23 °C, atmospheric pressure 96kPa and 50% humidity. Tolerance for coil resistance, nominal electrical input and nominal power is ±7%.

🚊 Railways, rolling stock - Standards						
EN 60077	Electric equipment for rolling stock - General service conditions and general rules					
EN 50155	Electronic equipment used on rolling stock					
EN 61373	Shock and vibration tests, Cat 1, Class B					
EN 45545-2	Fire behavior, Cat E10, Requirement R26, V0					
ASTM E162, E662	Fire behavior					

Railways, rolling stock - Special o	Railways, rolling stock - Special operating ranges for POK(s) - BIPOK(s) relays (1)							
Nominal voltage	Minimum pick-up voltage	Maximum operating voltage	Order symbol (1)					
24 Vdc	18	33	Z01					
24 Vdc	16	32	Z02					
24 Vdc	16.8	32	Z03					
24 Vdc	19	30	Z04					
36 Vdc	28	46	Z01					
72 Vdc	55	104	Z01					
72 Vdc	55	96	Z02					
110 Vdc	77	144	Z01					

(1) To order the relay with the special operating range, indicate the "Z0x" symbol in the "Keying position" field of the ordering scheme. The special range may be subject to operating specifications different from standard specifications. Please contact us for further information.

Configuration Options	
P2	Tropicalization of the coil with epoxy resin for use with 95% RH (@ T 50 °C). This treatment also protects the coil against corrosion which could occur by combination of the humidity with certain chemical agents, such as those found in acid atmospheres (typical of geothermal power stations) or saline atmospheres.
P4GEO	Gold plating of contacts with gold-nickel alloy, thickness $\ge 6\mu$. This treatment ensures long-term capacity of the contact to conduct lower currents in harsh ambient conditions such as acid atmospheres (typical of geothermal power stations) or saline atmospheres.
P5GEO	P4GEO gold-plating of contacts + P2 coil tropicalization.
P6GEO	P4GEO type gold-plating, but applied to contacts, contact terminals and output terminals + P2 coil tropicalization.
P7	AgCdO (silver cadmium oxide) contacts.
P8	Gold plating of contacts with gold-cobalt alloy, thickness $\ge 5\mu$, knurled fixed contact. This finish allows further improvement of the performance provided by gold-plated contact, compared to P4GEO treatment.
LED	LED indicator showing presence of power supply, wired in parallel with the coil.
FLYBACK DIODE	Polarized component connected in parallel with the coil (type 1N4007 or BYW56 for rolling stock version) designed to suppress overvoltages generated by the coil when de-energized.
VARISTOR	Non-polarized component connected in parallel with the coil, designed to suppress overvoltages higher than the clamping voltage, generated by the coil when de-energized.
TRANSIL	Non-polarized component connected in parallel with the coil. Behavior is similar to that of a varistor, with faster operating times.
LOW TEMPERATURE	Minimum operating temperature -50°C, only for rolling stock version (option "L").
C.S.	PCB-mount version (for POK-POKS-BIPOK-BIPOKS only).

Ordering sche	me		1	· · · · · · · · · · · · · · · · · · ·			1		
Model	Number of CO contacts	Product code	Application ⁽¹⁾	Configuration A	Configuration B	Label	Type of power supply	Nominal voltage (V) ⁽²⁾	Keying position ⁽³⁾ / option
POK POKS BIPOK BIPOKS TRIPOK TRIPOKS QUADRIPOKS ESAPOKS	2 - 5A 2 - 10A 4 - 5A 4 - 10A 6 - 5A 6 - 10A 8 - 10A 12 - 10A	POK POKS BPOK BPOKS TPOK TPOKS QPOK EPOK	E: Energy Railway Fixed Equipment R: Railway Rolling Stock*	1: Standard 2: Diode // 3: Varistor 4: Led 5: Diode // + Led 6: Varistor + Led 7: Transil 8: Transil + Led	0: Standard 2: P2 4: P4 GEO 5: P5 GEO 6: P6 GEO 7: P7 8: P8	F	C: Vdc A: Vac 50 Hz H: Vac 60 Hz	012 - 024 - 036 048 - 072 - 096 100 - 110 - 125 127 - 132 - 144 220 - 230	XXX CS = PCB-mount version L = low temperature**
		TPOKS	E	2	0	F	Α	230	

	TPOKS	E	3	0	F	А	230				
	TPOKSE30F-A230 - TRIPOKS relay, ENERGY series, nominal voltage 230 Vac, equipped with varistor										
Example	BPOKS	R	5	8	F	С	024				
Lyampie	BPOKSR58F-C024 - BIPOKS relay, ROLLING STOCK series, nominal voltage 24 Vdc, equipped with diode, LED, with P8 finish (gold-plated contacts)										
	POK	R	1	0	F	С	110	L			
	DOK	D105 C1101	DOK valav valling at	ali conice nomi	امير امما	tono 110 Vala w	th option // // //o	· · · • • • • • • • • • • • • • • • • •			

POKR10F - C110 L - POK relay, rolling stock series, nominal voltage 110 Vdc with option "L" (low temp.)

(1) E = ENERGY: all applications, except for railways rolling stock.

Suitable on energy production, transport and distribution plants, railways fixed equipment, petrolchemical and heavy industry.

R = RAILWAYS, ROLLING STOCK: Application on board rolling stock (rail-tram-trolley vehicles). Electrical characteristics according to EN60077. Availables also the product series:

RAILWAYS, FIXED EQUIPMENT: Approved and conforming relays and products to RFI (FS Group) specification no. RFI DPRIM STF IFS TE 143 A

For the list of RFI approved and conforming products, consult dedicated catalog "RAILWAY SERIES - RFI APPROVED".

STATIONS: ENEL approved material meeting LV15/LV16 specifications.

For the list of ENEL approved and conforming products, consult the dedicated catalog "STATIONS SERIES - LV15-LV16-LV20".

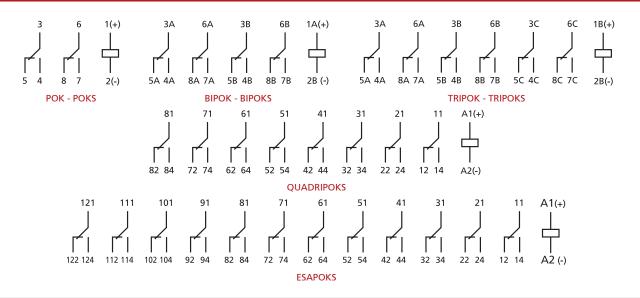
(2) Other values on request.

(3) Optional value. PCB-mount version available for POK - POKS - BIPOKS only. Multiple selection possible (e.g. CS - L). The positive mechanical keying is applied according to the manufacturer's model (not available for PCB-mount versions).

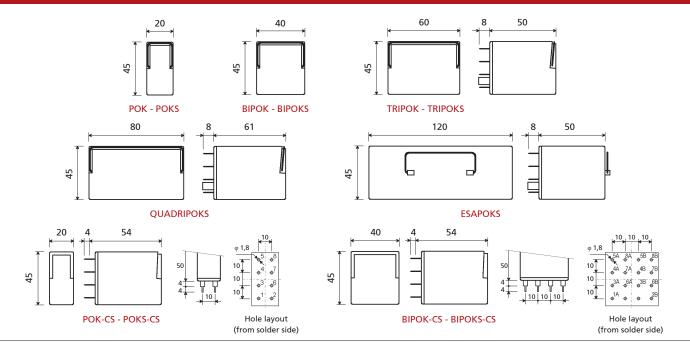
* Except ESAPOKS

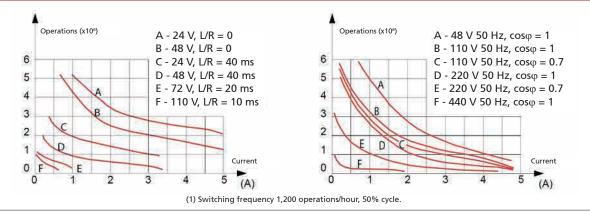
0

** Except TRIPOKS, QUADRIPOKS and ESAPOKS


PCB MOUNT

BACK


MONOSTABLE INSTANTANEOUS


41

Dimensions

Electrical life expectancy

Examples of electrical life expectancy 48 Vdc - 5 A - L/R = 10 ms : 5 × 10⁵ operations 80 Vdc - 5 A – Resistive : 5 × 10⁵ operations 110 Vdc - 0,5 A - L/R = 10 ms : 5 × 10⁵ operations 220 Vdc – 0.2 A – L/R = 10 ms: 10^{5} operations 110 Vac - 5 A - Cos ϕ = 0.7: 5 x 10⁵ operations 220 Vac - 3 A - $\cos \phi = 0.7$: 5 x 10⁵ operations 440 Vac - 0.2 A - Resistive: 5 x 10⁵ operations

Sockets	POK - POKS	BIPOK - BIPOKS	TRIPOK - TRIPOKS	QUADRIPOKS	ESAPOKS
Number of terminals	8	16	24	32	48
For wall or rail mounting					
Spring clamp, wall or DIN H35 rail mounting	PAIR080	PAIR160	PAIR240	PAIR320	PAIR480
Screw, wall or DIN H35 rail mounting	50IP20-I DIN	48BIP20-I DIN	78BIP20-I DIN	96IP20-I DIN	156IP20-I DIN
Screw, wall mounting	50L	48BL	78BL	96BL	156BL
Double faston, wall mounting	51L	48L	78L	-	-
For flush mounting					
Double faston (4.8 x 0.8 mm)	ADF1	ADF2	ADF3	ADF4	ADF6
Screw	53IL	43IL	73IL	-	-
For mounting on PCB					
	65 ⁽¹⁾	65	-	-	-

(1) Suitable for mounting 2 relays side by side.

Retaining clips – correspondence with sockets	POK - POKS	BIPOK - BIPOKS	TRIPOK - TRIPOKS	QUADRIPOKS	ESAPOKS
Number of clips per relay	1	1 ⁽¹⁾	2	2	2
SOCKET MODEL			CLIP MODEL		
For wall or rail mounting					
PAIR080, PAIR160, PAIR240, PAIR320, PAIR480	RPB48	RPB48	RPB48	RQ48	RPB48
50IP20-I DIN, 48BIP20-I DIN, 78BIP20-I DIN, 96IP20-I DIN, 156IP20-I DIN	RPB48	RPB48	RPB48	RQ48	RPB48
50L, 48BL, 78BL, 96BL, 156BL	RPB48	RPB48	RPB48	RQ48	RPB48
51L, 48L, 78L	RPB48	RPB48	RPB48	-	-
For flush mounting					
ADF1, ADF2, ADF3, ADF4, ADF6	RPB48	RPB48	RPB48	RQ48	RPB48
ADF, 53IL, 43IL, 73IL ⁽²⁾	RPB43	RPB43	RPB43	-	-
For mounting on PCB					
65	RPB43	RPB43	-	-	-

(1) Assume two clips for use on rolling stock.

(2) Insert the clip before fastening the socket on the panel.

Mounting tips

The preferred mounting position is on the wall, with the relay positioned horizontally in the reading direction on the nameplate. For correct use of the relays, they should be spaced apart by at least 5 mm in the horizontal direction and 20 mm in the vertical direction. This is to allow correct upward dissipation of the heat generated by the coil. Set these distances according to the socket used. Distances can be reduced depending on the environmental application conditions and on the relay duty cycle.

For safe and secure operation, it is advisable to use retaining clips.

No special maintenance is required.

Condensation can form inside the relay when powered up and the outside ambient temperature is cold; this is quite normal and does not affect the operation of the relay. The plastic materials of the relay do not possess hygroscopic properties.

43

SOCKET NUMBERING EXPLANATIONS

MONOSTABLE NSTANTANEOUS

USER SECTORS

PRODUCT ADVANTAGES

- Plug-in monostable instantaneous relay
- Solid and rugged construction for heavy or intensive duty
- Very long electrical life expectancy and exceptional endurance
- Patent operating mechanism, designed to ensure high contact pressure
- Ample clearance between open contact elements (from 1.2 to 4 mm)
- Independent and self-cleaning contacts with high breaking capacity
- Magnetic arc blow-out for higher breaking capacity
- Excellent shock and vibration resistance
- Wide variety of configurations and customizations
- Option for use in geothermal sites available
- Wide range of sockets
- Retaining clip for secure locking of relay on socket
- Transparent cover, pull-out handle
- Positive mechanical keying for relay and socket

DESCRIPTION.

The **OK series** is made up of 7 basic models, created from a **patented common operating mechanism equipped** with 4 contacts. Solutions with 8 or 12 contacts are obtainable by using 2 or 3 relays in combination.

οκυις

The construction of the relays and careful choice of the materials are such that they ensure long life and considerable ruggedness even in harsh operating environments and when subject to strong thermal shocks. A **specific treatment (P5GEO or P6GEO)** combining coil tropicalization with gold-plated contacts allows the use of these items in geothermal electric power stations, as final relays for controlling field devices and for all power circuits.

The relays in the OK Series use a patented switching mechanism designed to minimize friction, resulting in a mechanical life expectancy of at least 100,000,000 operations.

This is made possible thanks to:

- The use of a solenoid with a core drawn in toward the main air gap, located at the centre of the coil, the only position in which the available magnetic flux can be exploited to the full
- The core motion being limited to the minimum, thereby optimizing mechanical forces and reducing friction. The motion is amplified by means of a W linkage, which allows an appreciable displacement of the contact (> 4 mm in the case of the version with NO contacts)

 The coil of elongated cylindrical geometry, best able to ensure high efficiency and effective dissipation of the heat produced.

Each contact is mounted on individual and independent blades, which are able to provide optimum shock and vibration resistance.

In particular, this generates pressure of around 0.8...1N on the make and break contacts, which is unparalleled by other products.

The common contact slides against the fixed poles (NO and NC contacts) both when opening and when closing, which ensures a notably effective self-cleaning action.

With ample clearance between the open contact elements, it becomes possible to **guarantee an impulse withstand voltage of 5 kW** between the poles of the single contact.

Excellent electrical and mechanical performance levels allow the product to be used in the most demanding of sectors such as, for example, control and signalling functions in electricity generating stations, electrical transformer stations, rail transport or in industries with continuous production processes (chemical industry, petroleum industry, rolling mills, cement factories, etc.).

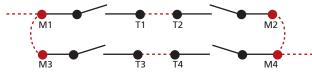
Above all, the excellent ability to withstand shock and vibration allow their use in seismic environments or on rolling stock.

Description of models

There are 7 relay models in the OK Series (OK, OKS, OKFC, OKSFC, OKSCD, OKSGC/d and OKUIC). The outputs are available on 16 terminals of standard dimensions 5x0.8mm, evenly and symmetrically divided into 4 rows spaced 10mm apart, in both directions. Internal connections are ordered symmetrically. Turning the relay through 180° on its connector has the effect simply of changing the contacts, without affecting operation (except in the case of relays with a polarized power input).

OK – OKS

The OK relay offers ruggedness, easy installation, high breaking capacity (with magnetic arc blow-out, model OKS), safe operation and adaptability to any kind of circuit, making it suitable for all heavy duty applications in the field of remote control systems and automation. The distance between contacts is 2.2mm. Superior shock and vibration resistance ensures that contacts are able to hold their operating position even when exposed to a shock force of 30g - 1ms. No opening of break contacts up to 3g.


On the OKS model, a powerful magnetic arc blow-out located between the 4 change-over contacts has the effect of generating a permanent magnetic field. When an inductive load circuit is broken, the resulting arc is swiftly extended and finally extinguished through the action of the magnetic field created by the blow-out.

OKFC - OKSFC - OKUIC

The OKFC relay is an energy saving component. The distance between contacts is 1.2mm. Contact pressures and shock and vibration resistance are the same as specified for OK/OKS models. In the case of d.c. loads, the breaking capacity is reduced from that of the OK relay, although the addition of the magnetic arc blow-out (model OKSFC) provides breaking capacity of up to 15 A at 120Vdc (see example of electrical life expectancy). On the OKSFC model, a powerful magnetic arc blow-out located between the 4 change-over contacts has the effect of generating a permanent magnetic field. When an inductive load circuit is broken, the resulting arc is swiftly extended and extinguished through the action of the magnetic field created by the blow-out. With direct current, breaking capacity is doubled. For d.c. and a.c. currents that can be broken without the blow-out, the effect of having this feature available will be to reduce wear on the contacts, doubling electrical life expectancy.

The connection of 2 contacts in series increases electrical life expectancy and doubles breaking capacity when handling direct current. The connection of 2 contacts in parallel likewise increases electrical life expectancy.

In the event that the 4 contacts are all available for breaking purposes, it is possible to use a series/parallel connection arrangement as illustrated below. In the case of high voltages, from 250V upwards, it is best to avoid breaking opposite polarities on adjacent contacts.

The use of the OKFC or OKSFC relay is advisable whenever the requirement is for detecting loss of voltage, hence where relays are permanently powered up, or when the ambient temperature may reach 70 °C. These relays can be powered up permanently, even at the maximum voltage of the specified operating range; they can also handle wide fluctuations in voltage and consequently are able to respond, for example, to standards for rolling stock, as in the case of the OKUIC model, which has a coil with a wide operating range.

OKSCD

The silver-coated contacts of normal relays can fuse together when closed if exposed to a peak current of 50 A for at least 5 ms. Using cadmium oxide contacts, the surfaces will fuse only at currents higher than 150 A. With magnetic arc blow-out fitted as standard to these relays, there is no possibility of the arc creating a hot spot between the contacts that could cause them to become welded together. This relay is especially suitable for handling highly inductive direct current loads, and circuits with filament lamps where the closing of contacts can produce current peaks of up to 10 or 15 times the nominal strength (public or industrial lighting systems). It can also be used for starting small electric motors and other appliances that produce high transient currents. The OKSCD relay has an electrical life expectancy equal to that of the OKS relay, but is also suitable for use with circuits generating high transient currents, given the factors indicated above. Controlling a circuit with 600W filament lamps connected to a 110Vac supply, for example, the OKSCD relay is capable of 1,500,000 operations.

OKSGcCd

The OKSGcCd relay has a longer electrical life expectancy than the OKSCd model. It has 4 normally open contacts, and a distance between contacts of > 4mm. Magnetic arc blow-out is fitted as a standard feature. The OKSGcCd relay can be used with heavily inductive d.c. loads, where there is no need for change-over contacts.

OKB184

The OKB184 models are equipped as standard with a blow-out magnet and have low coil consumption. As these relays are K3-qualified, they are the relays of reference in the nuclear sector.

45

Models	Number of contacts	Continuous duty	Magnetic arc blow-out	AgCdO contacts	Long travel	Rolling stock application
ОК						
OKS			•			
OKFC		•				
OKSFC	4 (1)	•	•			
OKSCd	4 (1)		•	•		
OKSGcCd			•	•	•	
OKUIC	-	•	•			•
OKB184			•			

1. Versions with 8 and 12 contacts available (excluding OKUIC, OKSCd and OKSGcCd).

⚠

FOR CONFIGURATION OF PRODUCT CODE, SEE "ORDERING SCHEME" TABLE

Coil specifications	OK - OKS	OKFC - OKSFC	OKSCd - OKSGcCd	OKUIC	OKB184
Nominal voltages Un (1)	DC: 12-24-36-48-72	-110–125–132-144-220	AC: 12-24-48-110-1	15-127–220–230-380	48, 125 Vdc
Max. consumption at Un (DC/AC) ⁽²⁾	4.5 W / VA	3.5 W / VA	5 W / VA	3.5 W	3.5 W
	DC: 80110% Un	DC: 80120% Un	DC: 80110% Un	DC:	DC: 80110% U
Operating range ⁽¹⁾	AC: 85115% Un	AC: 85115% Un	AC: 80110% Un	70125% Un ⁽³⁾	DC: 80110% U
Type of duty	Continuous at Un (4)	Continuous	Continuous at Un (4)	Continuous	Continuous
Drop-out voltage ⁽⁵⁾		DC: >	> 5% Un AC: > 15%	6 Un	

1. Other values on request.

2. For versions with 8 and 12 contacts, double and treble the value respectively.

3. For operating ranges different to that specified by EN60077, refer to table "OKUIC - Special Ranges".

4. Continuous duty is possible at the maximum voltage of the operating range at Tmax: 40 $^\circ$ C.

5. Limit value for supply voltage, expressed as % of the nominal value, beneath which the relay is certain to be de-energized.

Contact specifications	OK - OKS - O	KFC - OKS	SFC - OKUI	C - OKB184	OKSCd	OKSGcCd	
Number and type ⁽¹⁾		4 CO, f	O, form C		4 CO, form C	4 NO	
Current Nominal (2)		10 A			10 A		
Maximum peak (1 min) ⁽³⁾	20 A			20 A			
Maximum pulse (10 ms) (3)		150	A		250 A		
	ОК		C),7 A – 120 Vdc – L/	R 0 ms: 5,5 x 10⁵ operations		
		OKS		1 A – 120 Vdc – L/F	R 40 ms: 5 x 10⁵ oper	ations	
Example of electrical life expectancy (4)	(OKFC		0,5 A – 110 Vdc –	c – L/R 40 ms: 10 ⁵ operations c – L/R 40 ms: 10 ⁵ operations		
1,800 operations/hour	OKSFC - O	кис		0,7 A – 132 Vdc –			
-	OKSCd			1 A – 120 Vdc – L/F	R 40 ms: 5 x 10⁵ oper	ations	
_	OKS	OKSGcCd 5 A – 110 Vdc – I		5 A – 110 Vdc – L/F	L/R 20 ms: 2 x 10 ⁵ operations		
Minimum load Standard contacts			50	00 mW (20V, 20 mA	۹)		
Gold-plated contacts ⁽⁵⁾			2	00 mW (20V, 5 mA	A)		
Maximum breaking voltage				350 Vdc / 440 Vac			
Contact material		Ag	Cu		AgC	CdO	
	OK-OKS-OKSCd	OKFC-	OKSFC	OKB184	OKSGcCd	OKUIC	
Operating time at Un (ms) (6) (7)				DC – AC			
Pick-up (NO contact closing)	≤ 28 - ≤ 40	≤ 38	- ≤ 40	≤ 30	≤ 30 - ≤ 45	≤ 4 0	
Drop-out (NC contact closing)	≤ 20 - ≤ 70	≤ 18	- ≤ 8 0	≤ 20	-	≤ 18	

1. Versions with 8 and 12 CO contacts available, excluding OKUIC, OKSCd and OKSGcCd.

2. On all contacts simultaneously.

3. The max. peak and pulse currents are those currents that can be handled, for a specified time, by the contact. They do not refer to steady or interrupted currents.

4. For other values, see electrical life expectancy curves.

5. Specifications of contacts on new relay

a. Plating material: **P4GEO**: gold-nickel alloy (>6µ).

b. When the gold-plated contact is subject to heavy loads, it will be degraded on the surface. In such case, the characteristics of the standard contact should be taken into consideration. This does not impair relay operation.

6. Unless specified otherwise, the operating time signifies until stabilization of the contact (including bounces).

7. Addition of a flyback diode connected in parallel with the coil (DC version only) causes an increase in operating time when the relay drops out.

	Insulation		MONOS NSTANTA
	Insulation resistance (at 500Vdc)		MOM
	between electrically independent circuits and between these circuits and ground	> 1,000 MΩ	
	between open contact parts	> 1,000 MΩ	NITH DED
	Withstand voltage at industrial frequency		
	between electrically independent circuits and between these circuits and ground	2 kV (1 min) - 2.2 kV (1 s)	NTA STAE BLY
	between open contact parts	2 kV (1 min) - 2.2 kV (1 s)	NSTA NO:
	between adjacent contacts	2 kV (1 min) - 2.2 kV (1 s)	A D D
	mpulse withstand voltage (1.2/50µs - 0.5J)		
	between electrically independent circuits and between these circuits and ground	5 kV	щ
	between open contact parts	5 kV	TABL
-			

	100 x 10 ⁶ operations					
Maximum switching rate Mechanical Degree of protection (with relay mounted)			3,600 operations / hour IP20 / IP40 or IP50 as option ⁽³⁾			
Dimensions (mm) ^{(1) (2)} Poids (g)	45x97x45 ~ 280	45x109x45 ~ 280	91.5x97x45 ~ 590	91.5x109x45 ~ 590	138x97x45 ~ 890	138x109x45 ~ 890

1. Output terminals excluded.

2. OKUIC relay: H 109mm for standard version, H 97mm for version with LED, DIODE, VARISTOR.

3. To order the relay with IP40 or IP50 protection, configure the ordering code by the "Keying position" column in "Ordering scheme".

Environmental specifications			тο	
Operating temperature		-25° to +55°C	AY WITH	
	OKUIC	-25° to +70°C	LY G	
Storage and shipping temperature		-40° to +85°C	CIB	
Relative humidity		Standard: 75% RH - Tropicalized: 95% RH	FORG	
Resistance to vibrations		5g - 10 to 60 Hz - 1 min		
Resistance to shock		30g - 11 ms	Ę	
Fire behavior		V0	E E E E E E E E E E E E E E E E E E E	
			Ü	

à	Standards and reference values		Σ
	EN 61810-1, EN 61810-2, EN 61810-7	Electromechanical elementary relays	Ľ
	EN 60695-2-10	Fire behavior	
	EN 50082-2	Electromagnetic compatibility	CKET BERIN NATIC
	EN 60529	Degree of protection provided by enclosures	SOC
			Z¥

Unless otherwise specified, products are designed and manufactured according to the requirements of the European and International standards indicated above. In accordance with EN 61810-1, all items of technical data are referred to ambient temperature 23 °C, atmospheric pressure 96kPa and 50% humidity. Tolerance for coil resistance, nominal electrical input and nominal power is ±7%.

Railways, rolling stock - Standards									
EN 60077	Electric equipment for rolling stock - General service conditions and general rules								
EN 50155	Electronic equipment used on rolling stock								
EN 61373	Shock and vibration tests, Cat 1, Class B								
EN 45545-2	Fire behavior, Cat E10, Requirement R26, V0								
ASTM E162, E662	Fire behavior								

Railways, rolling stock - Special operating ranges for OKUIC relay

Nominal voltage	Minimum pick-up voltage	Maximum operating voltage
24 Vdc	18	33
36 Vdc	28	48
72 Vdc	55	110
110 Vdc	77	144
128 Vdc	85	160

FRONT CONNECTION

BACK CONNECTION

PCB MOUNT

ABLE NEOUS

Configurations - Options	
P2	Tropicalisation de la bobine avec une résine époxy pour une utilisation en cas d'HR à 95 % (à T 50 °C). Ce traitement protège également la bobine contre la corrosion qui pourrait résulter d'une réaction entre l'humidité et certains agents chimiques présents dans des atmosphères acides (typiques des centrales géothermiques) ou salines.
P4GEO	Gold plating of contacts with gold-nickel alloy, thickness $\ge 6\mu$. This treatment ensures long-term capacity of the contact to conduct lower currents in harsh ambient conditions such as acid atmospheres (typical of geothermal power stations) or saline atmospheres.
P5GEO	P4GEO gold-plating of contacts + P2 coil tropicalization.
P6GEO	P4GEO type gold-plating, but applied to contacts, contact terminals and output terminals + P2 coil tropicalization.
LED	LED indicator showing presence of power supply, wired in parallel with the coil.
DIODE DE ROUE LIBRE	Polarized component connected in parallel with the coil (type 1N4007 or BYW56 for rolling stock version) designed to suppress overvoltages generated by the coil when de-energized.
VARISTANCE	Non-polarized component connected in parallel with the coil, designed to suppress overvoltages higher than the clamping voltage, generated by the coil when de-energized.
TRANSIL	Non-polarized component connected in parallel with the coil. Behaviour is similar to that of a varistor, with faster operating times.
IP40	IP40 protection with "6" handle or closure with screws.
IP50	IP50 protection with "6" handle (only for 4 CO version).
8 CONTACTS	Version with 8 change-over contacts, obtained using 2 x 4 CO relay, coils connected in series.
12 CONTACTS	Version with 12 change-over contacts, obtained using 3 x 4 CO relay, coils connected in series.

To order								
Product code	Number of contacts	Application ⁽¹⁾	Configuration A	Configuration B	Label	Type of power supply	Nominal voltage (V) ⁽²⁾	Keying position code ^{(;}
OK OKS OKFC OKSFC OKUIC OKSCd OKSGcCd	4: CO ⁽⁴⁾ 8 : 8 CO 12 : 12 CO	E: Energy Railway Fixed Equipment R: Railway Rolling Stock	1: Standard 2: Diode // 3: Varistor 4: Led 5: Diode // + Led 6: Varistor + Led 7: Transil 8: Transil + Led	0: Standard 2: P2 4: P4 GEO 5: P5 GEO 6: P6 GEO 7: P7 8: P8	F	C: Vdc A: Vac 50 Hz H: Vac 60 Hz	012 - 024 - 036 048 - 072 - 100 110 - 115 - 125 127 -132 - 144 220 - 230 - 380	XXX A: IP50 B: IP40

nple	OKSFC		E	2	0	F	с	110	
Exar		OKSFCE	20F-C110 - OKSF	C relay, ENERGY serie	s, nominal volta	ge 110 \	Vdc, equipped wit	th a flyback diode	

(1) E = ENERGY: all applications, except for railways rolling stock.

Suitable on energy production, transport and distribution plants, railways fixed equipment, petrolchemical and heavy industry.

R = RAILWAYS, ROLLING STOCK: Application on board rolling stock (rail-tram-trolley vehicles). Electrical characteristics according to EN60077.

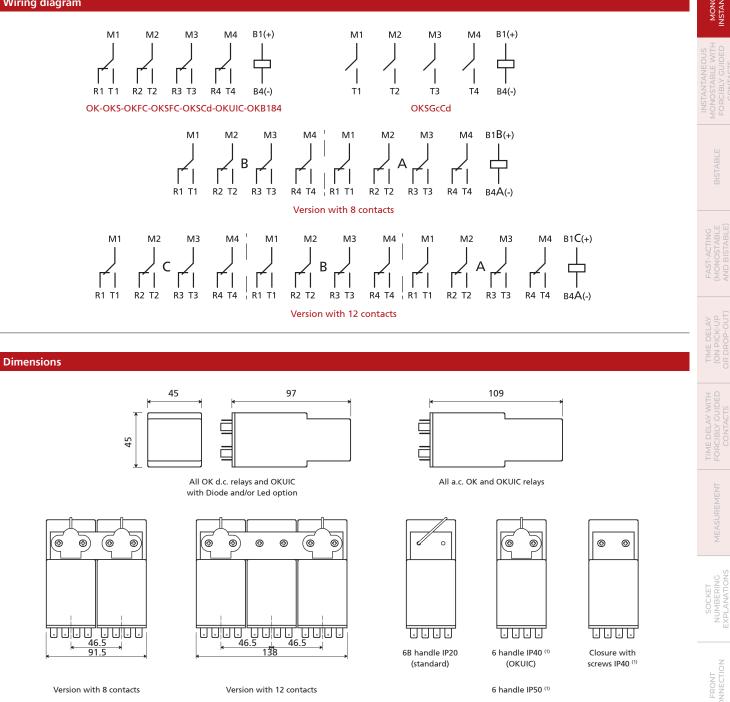
Other product series available:

RAILWAYS, FIXED EQUIPMENT: Approved and conforming relays and products to RFI (FS Group) specification no. RFI DPRIM STF IFS TE 143 A

For the list of RFI approved and conforming products, consult dedicated catalog "RAILWAY SERIES - RFI APPROVED".

STATIONS: ENEL approved material meeting LV15/LV16 specifications.

For the list of ENEL approved and conforming products, consult the dedicated catalog "STATIONS SERIES - LV15-LV16-LV20".


(2) Other values on request. Voltage 380V available as Vac only.

(3) Optional value. The positive mechanical keying is applied according to the manufacturer's model.

(4) For the standard version with 4 contacts, the field must be left empty.

Coded products		
	OKB 184	OK SFc UIC
48 Vdc	please contact us	-
72 Vdc	-	P01 4561 93
125 Vdc	please contact us	-

(1) IP40 or IP50 protection can requested as an option. See "Ordering scheme" for code details.

BACK CONNECTION

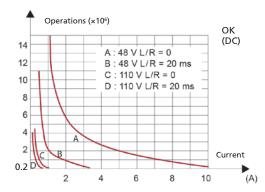
FRONT CONNECTION

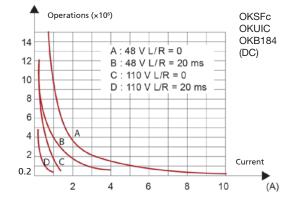
MONOSTABLE INSTANTANEOUS

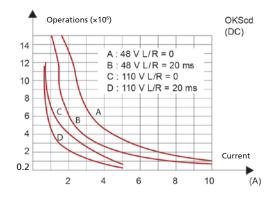
49

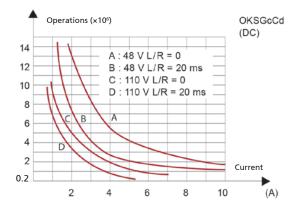
Example	s of electrica	l life expe	ctancy								
	U (Contact)	I (A)	L/R (ms) cosφ	Operations	Notes		U (Contact)	I (A)	L/R (ms) cosφ	Operations	Notes
	540 Vac	3	cosφ = 0.5	15,000	2		220 Vac	10	$\cos \phi = 0.7$	500,000	
		15	$\cos \phi = 1$	10,000	2	OKEC	110 Vdc	0.5	L/R = 5	1,000,000	
	380 Vac	10	$\cos \phi = 1$	200,000	•	OKFC	80 Vdc	1	L/R = 0	2,000,000	
		3x3.3	cosφ = 0.8	200,000			48 Vdc	5	L/R = 0	1,000,000	
		20	cosφ = 1	20,000	0						
		15	$\cos \phi = 0.5$	20,000	2			15	L/R = 0	100	2
		10	$\cos \phi = 1$	400,000				8	L/R = 0	2,000,000	3
ОК		3x6	$\cos \phi = 0.8$	200,000			120 Vdc	6	L/R = 10	500,000	2
ÜK	220 Vac	5	$\cos \phi = 1$	1,500,000				3	L/R = 10	100,000	
		5	$\cos \phi = 1$	3,000,000				1	L/R = 10	500,000	
		2.5	cosφ = 0.25	2,000,000		OKSFC					
		2	$\cos \phi = 1$	15,000,000		OKUIC					
		1.25	$\cos \phi = 1$	30,000,000				25	L/R = 0	100	2
						-		15	L/R = 20	100	0
	120 Vdc	1.5	L/R = 0	550,000			80 Vdc	10	L/R = 0	400,000	Ŭ
		10	1/0 0	1 000 000				7.5	L/R = 0	1,500,000	
	48 Vdc	10	L/R = 0	1,000,000				5	L/R = 10	400,000	
		1.5	L/R = 5	18,000,000						100,000	
	400 Vdc	6	L/R = 10	100	3		400 Vdc	6	L/R = 10	100	3
								15	L/R = 0	1,000	
		15	L/R = 0	1,000				3	L/R = 20	300,000	2
	250 Vdc	3	L/R = 20	300,000	2		250 Vdc	1	L/R = 10	30,000	
		1	L/R = 10	30,000				1	L/R = 0	1,000,000	2
		0.1	L/R = 15	3,500,000	2			0.1	L/R = 15	3,500,000	2
						-		20	1/0 0	10.000	•
		30	L/R = 0	100	3			20	L/R = 0	10,000	0
01/2		20	L/R = 0	10,000	2	OV/CO I		10	L/R = 10	1,000	2
OKS		10	L/R = 10	1,000		OKSCd	120 Vdc	10 5	L/R = 0	300,000	Ľ
	120 Vdc	10	L/R = 0	300,000	2				L/R = 10	60,000 500,000	
	120 Vuc	5	L/R = 10	60,000				1	L/R = 40		
		2	L/R = 100	50,000				1	L/R = 10	1,000,000	
		1	L/R = 40	500,000		-					
		1	L/R = 10	1,000,000			40.111	10	L/R = 0	2,600,000	
							48 Vdc	3	L/R = 30	400,000	
		10	D L/R = 0 2,600,000			1.5	L/R = 5	25,000,000			
	48 Vdc	1.5	L/R = 5	25,000,000							
	24 Vdc	30	L/R = 50	200,000	4	-	24 Vdc	30	L/R = 50	200,000	4

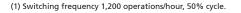
Notes :

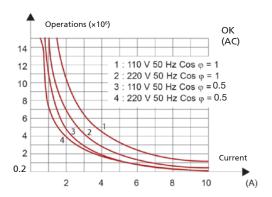

(2) 2 contacts connected in series

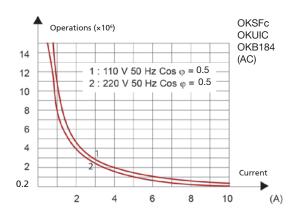

③ 3 contacts connected in series

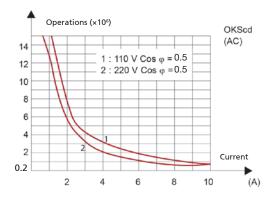

2 contacts connected in parallel

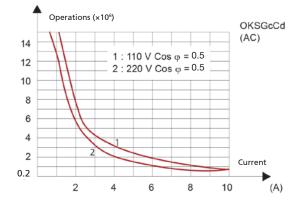

3 contacts connected in parallel


4 contacts connected in parallel









Sockets	OK series, 4 CO ⁽¹⁾
For wall or rail mounting	
Spring clamp, wall or DIN H35 rail mounting	PAIR160
Screw, wall or DIN H35 rail mounting	48BIP20-I DIN
Screw, wall mounting	48BL
Double faston, wall mounting	48L
For flush mounting	
Double faston (4.8 × 0.8 mm)	ADF2
Screw	43IL
For mounting on PCB	
	65

1) For version with 8 and 12 contacts, assume 2 and 3 sockets respectively for each relay. In this instance, the mounting distance between centres of the sockets must be 45mm. The ADF socket cannot be used.

For more details, see specifications of mounting accessories.

Retaining clips Correspondence with sockets	OK series - Vsupply = V _{DC}	OK series - Vsupply = V _{AC} OKUIC	OKUIC with LED / VR / DIODE		
Number of clips per relay	1, 2 for version with 8-12 CO contacts	1, 2 for version with 8-12 CO contacts and OKUIC	2		
SOCKET MODEL		CLIP MODEL			
For wall or rail mounting					
PAIR160, 48BIP20-I DIN, 48BL, 48L	RC48	RL48	RC48		
For flush mounting					
ADF2	RC48	RL48	RC48		
43IL ⁽¹⁾	RC43	RL43	RC43		
For mounting on PCB					
65	RC43	RL43	RC43		

(1) Insert the clip before fastening the socket on the panel.

Mounting tips

The preferred mounting position is on the wall, with the relay positioned horizontally in the reading direction on the nameplate. For correct use of the relays, they should be spaced apart by at least 5 mm in the horizontal direction and 20 mm in the vertical direction. This is to allow correct upward dissipation of the heat generated by the coil. Set these distances according to the socket used. Distances can be reduced depending on the environmental application conditions and on the relay duty cycle.

For safe and secure operation, it is advisable to use retaining clips.

No special maintenance is required.

Condensation can form inside the relay when powered up and the outside ambient temperature is cold; this is quite normal and does not affect the operation of the relay. The plastic materials of the relay do not possess hygroscopic properties.

Notes

														INSTANTANEOUS MONOSTABLE WITH FORCIBLY GUIDED CONTACTS
			_											BISTABLE
														FAST-ACTING (MONOSTABLE AND BISTABLE)
														 TIME DELAY (ON PICK-UP OR DROP-OUT)
														TIME DELAY WITH FORCIBLY GUIDED CONTACTS
														MEASUREMENT
														SOCKET NUMBERING EXPLANATIONS
														FRONT CONNECTION
														BACK CONNECTION
														 PCB MOUNT
														RETAINING CLIPS

RE 3000 SERIES RELAYS

PRODUCT ADVANTAGES

- EDF certification for 48 Vdc and 125 Vdc
- Complies with the HM-2A/03/111/A standard
- Numerous AC and DC power supply voltages
- Breaking capacity suitable for inductive loads

DESCRIPTION

RE 3000 relays have 4 x 10 A contacts, with high reliability for intensive use in harsh conditions. The relays in the RE 3000 Series are intended for all automation applications.

Designed to operate in a harsh climatic and electrical environment, as well as in zones with high seismic constraints.

Their production quality gives them a very long life expectancy.

The total transparency and polished finish of the cover leave the condition of the contacts constantly visible.

The RE 3000N benefits from more a stringent manufacturing process, notably in terms of the tests performed on cleaning and measurement of the contacts' resistances.

		TABLE
Models	Number of contacts	NOS ANT/
RE 3000	4	MG

SEE THE "ORDERING SCHEME" TABLE

Coil specifications	RE 3000	RE 3000 S / RE 3000 N					
Nominal voltages Un ⁽¹⁾	DC: 12, 24, 30, 48, 60, 100, 110, 125, 200, 220, 250	AC: 12, 24, 48, 100/√3, 60, 110/√3, 110, 12 220, 415/√3, 380					
Max. consumption at Un (DC/AC)) <3W						
Operating range	80 to	110%					
Type of duty	ty Continuous						
Drop-out voltage ⁽²⁾	> 15%	> 10%					

1. For the RE 3000 N, only nominal voltages 48 and 125 are available.

 \wedge

2. Limit value for supply voltage, expressed as % of the nominal value, beneath which the relay is certain to be de-energized.

specifications		8000 S - RE 3000 N	
Number and type	4 CO), Form C	
Nominal ⁽¹⁾		10 A	
Maximum pulse (30 ms) ⁽²⁾	250 A	for 30 ms	
m load Standard contacts Gold-plated contact			
Maximum breaking voltage	250 Vdc		
Contact material	Silver		
Contact closure pressure	≥ 0.2 N		
Contact opening pressure	≥ 0.2 N		
Contact closure time	DC	≤ 45 ms	
	AC	≤ 30 ms	
Contact opening time	DC	≤ 25 ms	
	AC	≤ 65 ms	

Insulation		
Insulation resistance (at 500 Vdc) between the independent circuits and the ground between open contact parts	> 1,000 MΩ > 1,000 MΩ	
Withstand voltage at industrial frequency between the independent circuits and the ground between open contact parts	2 kV (1 min) 1 kV (1 min)	
Impulse withstand voltage (1.2/50 µs - 0.5 J) between the independent circuits and the ground between open contact parts	5 kV 5 kV	

PCB MOUNT

RETAINING CLIPS

KEYING

Mechanical specifications		
ncy 20x10 ⁶ operations		
ical 3, 600 operations / hour		
IP20		
nm) 45x40x103 ⁽¹⁾		
200 200		
n nt		

1. Excluding the output terminals

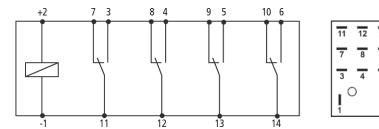
÷,	Servironmental specifications		
	Operating temperature	Standard	-10 ÷ +55°C
	Storage and shipping temperature		-25 ÷ +70°C
	Relative humidity		Standard: 65%

Standards and reference values	
Resistance to vibrations (as per EN 61810) EDF specifications	5 g from 5 to 60 Hz (1 min) HM-2 A / 03 / 111 / A
EDF specifications EDF application certification	
EDF certification (K3/SEPTEN)	At 48 Vdc and 125 Vdc for RE 3000 N model

Ordering scheme

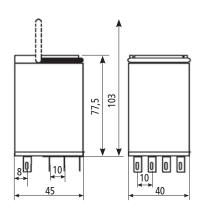
Jan			
Coded products			
RE 3000 RE 3000			RE 3000
12 Vdc	RE3A 4126	24 Vac	RE3A 4107
24 Vdc	RE3A 4127	48 Vac	RE3A 4111
48 Vdc	RE3A 4131	110 Vac	RE3A 4113
110 Vdc	RE3A 4133	127 Vac	RE3A 4115
127 Vdc	RE3A 4135	220 Vac	RE3A 4116
220 Vdc	RE3A 4136	380 Vac	RE3A 4117

Qualified products		
RE 3000 N		
48 Vdc	RE3A121-CFG	
48 Vdc + Diode	RE3A122-CFG	
125 Vdc	RE3A125-CFG	

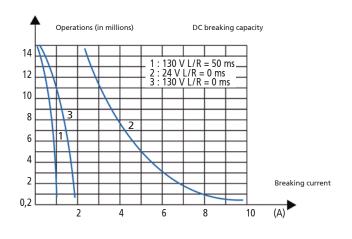

Sockets and retaining clips		RE 3000 / N	Retaining clip	
Type of installation	Type of outputs	Model	Retaining clip	
	Single faston	EVL 3100	ACCA 4162	
For wall mounting	Screw	EVV 3100	ACCA 4162	
	Screw	EVR 3100	ACCA 4162	
For flush mounting	Single blade	ERL 310	ACCA 4162	
	Double blade	ERL 320	ACCA 4162	

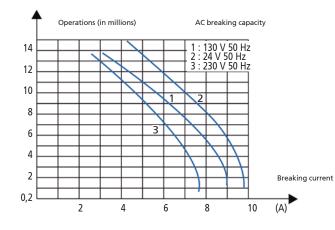
Mounting tips

The preferred mounting position is on the wall, with the relay positioned horizontally in the reading direction on the nameplate. For correct use of the relays, they should be spaced apart by at least 5 mm in the horizontal direction and 20 mm in the vertical direction. This is to allow correct upward dissipation of the heat generated by the coil. Set these distances according to the socket used. Distances can be reduced depending on the environmental application conditions and on the relay duty cycle. For safe and secure operation, it is advisable to use retaining clips.


No special maintenance is required.

Condensation can form inside the relay when powered up and the outside ambient temperature is cold; this is quite normal and does not affect the operation of the relay. The plastic materials of the relay do not possess hygroscopic properties.




14 13 9 10 6 5 Ο 2

Dimensions

Electrical life expectancy

PCB MOUNT

RE

F-OK B SERIES

USER SECTORS

PRODUCT ADVANTAGES

- 4 double-break changeover contacts / 13 A
- NF-F 62002 railway certification
- High reliability for intensive use in harsh conditions
- Long-travel contacts and excellent break reliability

DESCRIPTION

The relays in the F-OK Series are designed and manufactured with materials and solutions which make them particularly long-lasting and rugged. They are ideal for use in difficult operating environments, even in the event of significant thermal shocks. Thanks to their high resistance to shocks and vibrations, these relays are particularly suitable for use on rolling stock.

Because of the high electrical and mechanical performance provided by these relays, they can not only be used on rolling stock, but also in sectors such as control and signaling in railway transport or in applications with continuous production processes. Equipped with "double break" contacts, they are effective at breaking DC loads.

				TABLE
Models		Number of contacts	Nominal current	ONOS ANTA
	F-OK B	4	5 A	MOMU

	-		
	\leq		
	\leq		
м			
=			
5			
2		\geq	
5	2		
5			
	4		
20	4		
\leq		0	
	5	LL	

FRONT CONNECTION
BACK INECTION

KEYING

Coil specifications	F-OK B	F-OK B
Nominal voltages Un ⁽¹⁾	VDC: 24-36-48-72-96-110-125-550	VAC: 48-127-220
Max. consumption at Un (DC/AC)	< 4.8 W	< 4.8 VA
Operating range ⁽¹⁾	DC: 70125% Un	AC: 80110% Un
Type of duty	Continuous	
Drop-out voltage ⁽²⁾	> 10% Un	> 10% Un

1. Other values on request. For ESAPOKS, values > 24 V.

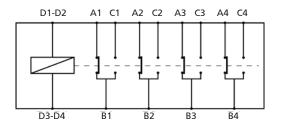
2. Limit value for supply voltage, expressed as % of the nominal value, beneath which the relay is certain to be de-energized.

N. I	1.4	4.0			
Number	and type	4 0	CO, Form Z		
Current Nominal (1)		13 A		_	
Maximum pulse	10 ms) ⁽²⁾	300	A for 10 ms		
Maximum breakin	g voltage	:	350 Vdc		
Contac	material	AgN	li AgCdO10		
Contact closure	e pressure		> 0.3 N		
Contact opening) pressure		> 0.3 N		
Contact clo	sure time	DC	≤ 55 ms		
Contact cic		AC	≤ 55 ms		
Contrations		DC	≤ 25 ms		
Contact ope	ning time	AC	≤ 25 ms		

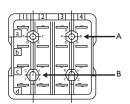
4	Insulation			
	Insulation resistance (at 500 Vdc)			FRONT
	between the independent circuits and the ground	> 1,000 MΩ	_	
	between open contact parts	> 1,000 MΩ		
	Withstand voltage at industrial frequency			NC
	between the independent circuits and the ground	2.5 kV (1 min)		ECK
	between open contact parts	2 kV (1 min)		B/ NN
				0

Mechanical specifications				
Mechanical life expectancy	100x10 ⁶ operations			
Degree of protection (with relay mounted)	IP40			
Dimensions (mm)	45x45x105 ⁽¹⁾			
Weight (g)	300			

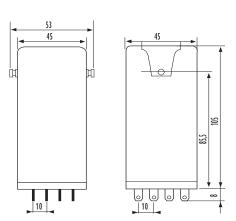
1. Excluding output terminals

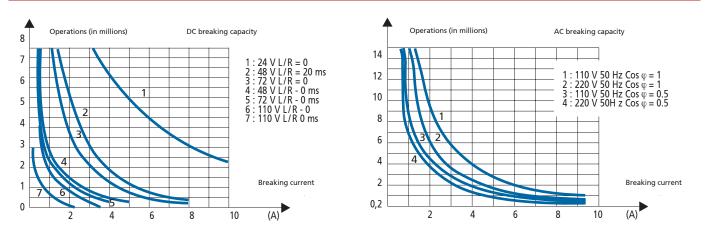

Environmental specifications					
Operating temperature	Standard	-25 ÷ +70°C			
Storage and shipping temperature	2	-40 ÷ +70°C			
Relative humidity		Standard: 80%			
Fire behavior		NF-F 16-101, NF-F 16-102, NF-F 62002			

Standards and reference values


Resistance to vibrations (as per NF-F 62002)	2 g from 10 to 120 Hz (1 min)
Railway standards	NF-F 16-101, NF-F 16-102 (materials), NF-F 62002

Ordering scheme - Please contact us


Connection diagram and positive mechanical keying


Coil voltage Keying position	Safety blank recess A	Safety blank recess B
220 Vac	С	G
24 Vdc	А	G
36 Vdc	F	L
48 Vdc	D	G
72 Vdc	В	G
72 Vdc double winding	J	F
110 Vdc	F	G
125 Vdc	E	G
550 Vdc	F	G

Dimensions

Electrical life expectancy

Sockets and retaining clips		F-OK B	
Type of installation	Type of outputs	Model	Retaining clip
For flush mounting and DIN rail	Single faston	84F	Delivered with the socket

Mounting tips

The preferred mounting position is on the wall, with the relay positioned horizontally in the reading direction on the nameplate. For correct use of the relays, they should be spaced apart by at least 5 mm in the horizontal direction and 20 mm in the vertical direction. This is to allow correct upward dissipation of the heat generated by the coil. Set these distances according to the socket used. Distances can be reduced depending on the environmental application conditions and on the relay duty cycle.

For safe and secure operation, it is advisable to use retaining clips.

No special maintenance is required.

Condensation can form inside the relay when powered up and the outside ambient temperature is cold; this is quite normal and does not affect the operation of the relay. The plastic materials of the relay do not possess hygroscopic properties.

61

CHAUVIN ARNOUX

ENERGY

MONOSTABLE INSTANTANEOUS

INSTANTANEOUS AONOSTABLE WITI FORCIBLY GUIDED

BISTABLE

FAST-ACTING (MONOSTABLE AND BISTABLE)

TIME DELAY ON PICK-UP D DROP-OUT)

> elay with Ly guided <u>Itacts</u>

SUREMENT

MEAS

SOCKET NUMBERING EXPLANATIONS

> FRONT CONNECTION

BACK

INSTANTANEOUS MONOSTABLE RELAYS WITH FORCIBLY GUIDED CONTACTS

CHAUVIN ARNOUX

63

RCG RDG SERIES with forcibly guided contacts

RCG

RDG

PRODUCT ADVANTAGES

- Forcibly guided (mechanically linked) contacts, relay compliant with EN 61810-3, type A
- Weld-no-transfer technology
- Compact plug-in monostable instantaneous relay
- Suitable for safety applications
- Solid and rugged construction for heavy or intensive duty, IP50 protection
- Self-cleaning knurled contacts
- Long electrical life expectancy
- New "HIGH POWER" magnetic arc blow-out for improved breaking capacity, as option
- Wide range of options: LED indicating power on, FLYBACK DIODE
- Retaining clip for secure locking of relay on socket
- Transparent cover, pull-out handle

DESCRIPTION

The relays in the RCG / RDG line are highly reliable products featuring high performance, suitable for applications in very harsh and disturbed environments. They are provided with forcibly guided (mechanically linked) contacts. The component conforms to the EN 61810-3 requirements, type A relay (all contacts are mechanically linked). Forcibly guided contacts are also known as weld-no-transfer contacts. A typical application is the check reading of a contact for determining, with absolute certainty, the state of the other contacts in self-monitoring control systems.

Thanks to the exceptional breaking capacity, the relay is suitable for controlling **heavy duty loads** with intensive switching frequency where safety and electrical continuity is an all-important factor.

The versatility in manufacture allows producing relays with various voltages.

The types of contacts allow obtaining remarkable performance levels both for high, inductive loads or very low loads; the optional presence of the **magnetic arc blowout** contributes considerably to the **breaking capacity**. The knurled contacts ensure **better self-cleaning characteristics and lower ohm resistance** thanks to the various points of electrical connection, thereby **improving the electrical life** of the component. In relays with forcibly guided (mechanically linked) or weld-no-transfer contacts, special design and constructional measures are used to ensure that make (normally-open) contacts can not assume the same state as break (normally-closed) contacts.

- If, when powering up a relay, a NC contact fails to open, the remaining NO contacts must not close, maintaining a contact gap ≥ 0.5 mm.
- When the relay is de-energized, if a NO contact fails to open, the remaining NC contact must not close, maintaining a contact gap \geq 0.5 mm.

EN 61810-3 lays down the standard requirements for relays with forcibly guided contacts. This standard defines two types of relay with forcibly guided contacts, namely:

- Type A: Relay whose contacts are all mechanically linked (forcibly guided).
- Type B: Relay containing mechanically linked contacts and contacts which are not mechanically linked.

In the case of relays that include changeover contacts, either the make circuit or the break circuit of a changeover contact can be considered to meet the requirements of this standard.

Ø	Models	Number of contacts	Magnetic arc blow-out	HIGH POWER Magnetic arc blow-out	MONOSI
	RCG.x2	2			
	RCG.x6	2	•		
	RCG.x8	2		•	
	RDG.x2	4			TAN1 IOST/
	RDG.x6	4	•		- INST MONG FORG
	RDG.x8	4		•	

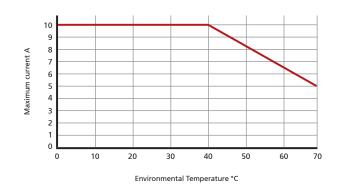
 Λ

FOR CONFIGURATION OF PRODUCT CODE, SEE "ORDERING SCHEME" TABLE

RCG	RDG	
DC: 24-36-48-7	2-96-110-125 ⁽¹⁾	
2.2 W	2.7 W	
Continuous		
DC: > !	5% Un	
	DC: 24-36-48-7 2.2 W 80 ÷ 11 70 ÷ 12 Conti	DC: 24-36-48-72-96-110-125 (¹) 2.2 W 2.7 W 80 ÷ 115 % Un 70 ÷ 125 % Un

(1) Other values on request.

(2) See "Ordering scheme" table for order code. Suitable for application on ROLLING STOCK. Operating range in accordance with EN60077.


(3) Limit value for supply voltage, expressed as % of the nominal value, beneath which the relay is certainly de-energized.

Contact specifica	tions		RCG		RDG	
	Number and type	2 CO	, form C	4 CC	O, form C	
Current Nominal Maximum peak ⁽¹⁾ Maximum pulse ⁽¹⁾		See the following chart 13A for 1min - 20A per 1s 100A for 10ms				
Exai	mple of electrical life ⁽²⁾ * 1.200 oper./h ** 600 oper./h	Standard : With Magnetic arc blow With HIGH POWER Magn	vout: RCG.	G.x 2 / RDG. x2 : 0.2A - 110Vd i.x 6 / RDG. x6 : 0.5A - 110Vdc RCG.x 8 / RDG.x 8 : 0.7A - 132V		
Minimum load Standard contacts Gold-plated contact Making capacity				nW (10V, 5mA) nW (5V, 5mA)		
		30 A - 110Vdc - L/R 0 ms: 2,000 operations				
Maxi	imum breaking voltage	250 Vdc / 300 Vac				
	Contact material		AgSnO ₂ (mobile con	ntacts) - AgNi (fixed contac	:ts)	_
Op	erating time at Un (ms) ⁽³⁾	Standard	Avec diode	Standard	With diode	
Pick-u	p (NC contact opening)	≤ 13	≤ 13	≤ 17	≤ 17	
Pick-	up (NO contact closing)	≤ 19	≤ 19	≤ 25	≤ 25	
Drop-ou ⁻	it (NO contact opening)	≤ 4	≤ 11	≤ 4	≤ 20	
Drop-c	out (NC contact closing)	≤ 16	≤ 25	≤ 14	≤ 34	

(1) The max. peak and pulse currents are those currents that can be handled, for a specified time, by the contact. They do not refer to steady or interrupted currents.

(2) For other examples, see electrical life expectancy table.

(3) Unless specified otherwise, the operating times refer to the stabilization of the contact (including bounces).

CLIPS PCB MOUNT

BACK CONNECTION

CHAUVIN ARNOUX

ENERGY

Insulation	
Insulation resistance (at 500Vdc)	
between electrically independent circuits and between these circuits and ground	> 1,000 MΩ
between open contact parts	> 1,000 MΩ
Dielectric withstanding voltage at industrial frequency	
between electrically independent circuits and ground	4 kV (1 min)
between coil and contacts parts	3 kV (1 min)
between adjacent contacts	3.5 kV (1 min)
between open contact parts	2 kV (1 min)
Impulse withstand (1.2/50µs - 0.5J)	
between electrically independent circuits and ground	5 kV
between open contact parts	3 kV

Ø	Mechanical specifications					
	Mecha	nical life expectacy	20x10 ⁶ operations			
	Maximum switching rate Mechanical Protection rating (with relay mounted) Dimensions (mm)					
			RCG	RDG		
			40x20x50 ⁽¹⁾	40x40x50 ⁽¹⁾		
		Weight (g)	60	115		

(1) Excluding output terminals

Environmental characteristics						
Operating temperature Standard Version matériel	-25 ÷ +55°C					
Version for railways, rolling stock	-25 ÷ +70°C (+85°C for 10min) -40°C as option					
Storage and shipping temperature	-40 ÷ +85°C					
Relative humidity	Standard: 75% RH - Tropicalized: 95% RH					
Fire behavior	V0					

Standards and reference values						
EN 61810-1, EN 61810-7	Electromechanical elementary relays					
EN 61810-3, type A	Relays with forcibly guided (mechanically linked) contacts, type A					
EN 60695-2-10	Fire behavior					
EN 60529	Degree of protection provided by enclosures					
EN 61000-4	Electromagnetic compatibility					
	EN 61810-1, EN 61810-7 EN 61810-3, type A EN 60695-2-10 EN 60529					

Unless otherwise specified, the products are designed and manufactured according to the requirements of the above-mentioned European and International standards. In accordance with EN 61810-1, all technical data are referred to ambient temperature of 23°C, atmospheric pressure of 96kPa and 50% humidity. Tolerance for coil resistance and nominal power is ±5%.

Railways, rolling stock - Standards	Applicable to the RCGR and RDGR series
EN 60077	Electric equipment for rolling stock - General service conditions and general rules
EN 50155	Electronic equipment used on rolling stock - T3 class
EN 61373 ⁽¹⁾	Shock and vibration tests, Cat 1, Class B
EN 45545-2	Fire behavior, HL3 : Cat E10 (Requirement R26)
ASTM E162, E662	Fire behavior

(1) only for RDGR family: permissible opening time of contacts on a de-energized relay t<100 μs

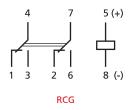
Configurations - Optior	IS									
TROPICALIZATION	Surface treatment of the coil with protective coating for use with RH 95%.									
GOLD PLATING	Surface treatment of the contacts, blades and output terminals with gold-cobalt alloy $\ge 2\mu$. This treatment ensures long-term capacity of the contact to conduct lower currents.									
LED	LED indicator showing presence of power supply. Flyback diode mounted as standard.									
FLYBACK DIODE	Component connected in parallel to the coil (type BYW56) designed to dampen overvoltages generated by the coil when de-energized.									
TRANSIL	Non-polarized component connected in parallel to the coil. Behavior is similar to that of a varistor with faster operating times.									
LOW TEMPERATURE	Minimum operating temperature -40°C, only for rolling stock version (option "L").									

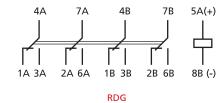
-	ordering sch	neme								ONOM
	Code produit	Application ⁽¹⁾	Configuration A	Configuration B	Label	Type of power supply	Nominal voltage (V) ⁽²⁾	Finish ⁽³⁾	Keying position code ⁽⁴⁾	OUS WITH MC
	RCG 2 contacts) RDG 4 contacts)	E: Energy F: Railway Fixed Equipment R: Railway Rolling stock	1: Standard 2: Gold plating + Diode // + Led 3: Diode // 4: Gold plating 6: Gold plating + Diode // 7: Diode // + Led	 2: Standard 6: With magnetic arc blow-out 8: With HIGH POWER magnetic arc blow out 	F	C: Vdc	024 - 036 048 - 072 096 - 110 - 125	T: Tropicalized coil L: Low temperature	XX	INSTANTANEG MONOSTABLE FORCINITY CIUI
ple	RCG	E	8: Transil 4 RCGE42F-C048 = EN	blow-out 2 JERGY series relay	F with 2 (C CO gold-plated	048 contacts, 48Vdc o	coil		FAST-ACTING (MONOSTABLE
Example	RDG	R	1	6	F	C	110			-
ш		RDGR16F-C1	10 = RAILWAY series	s relay, rolling stock	, with 4	CO contacts, ma	agnetic arc blow-	out, 110Vdc coil		ELAY K-UP

^{1.} ENGERY: all applications except for railway.

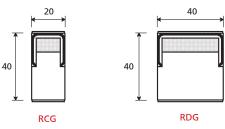
Construction according to RFI (FS Group, Italy) specification n° RFI DPRIM STF IFS TE143 A, if applicable for list of RFI approved and conforming products, consult dedicated catalog "RAILWAY SERIES - RFI APPROVED"

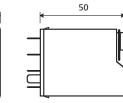
RAILWAYS, ROLLING STOCK: application on board rolling stock. Electrical characteristics according to EN60077.


2. Other values on request.


3. Optional value.

Ë


4. Optional value. The positive mechanical keying is applied according to the manufacturer's model.


Wiring diagram

Dimensions

67

RAILWAYS, FIXED EQUIPMENT: application on fixed power systems and electrical railway traction.

Some examples of electrical life expectancy.

RCG.12, RDG.12 (without magnetic arc blow-out)										
U	I (A)	L/R (ms)	Operations							
110Vdc	0.2	40	500,000							
220Vdc	0.2	10	80,000							
U	I (A)	cosφ	Operations							
110Vac	1	1	1,200,000							
110Vac	1	0.5	1,000,000							
110Vac	5	1	500,000							
110Vac	5	0.5	300,000							
220Vac	0.5	1	1,200,000							
220Vac	1	0.5	500,000							
220Vac	5	1	400,000							
220Vac	5	0.5	300,000							

RCG.16,	RDG.16 (witl	n magnetic arc	blow-out)
U	I (A)	L/R (ms)	Operations
110Vdc	0.2	40	1,000,000
110Vdc	0.5	40	150,000
110Vdc	0.6	10	300,000
110Vdc	1	10	100,000
220Vdc	0.2	10	100,000
U	I (A)	cosφ	Operations
110Vac	1	1	2,000,000
110Vac	1	0.5	1,500,000
110Vac	5	1	950,000
110Vac	5	0.5	500,000
220Vac	0.5	1	2,000,000
220Vac	1	0.5	800,000
220Vac	5	1	600,000
220Vac	5	0.5	500,000

RCG.18, R	DG.18 (with HI	GH POWER magnet	tic arc blow-out)
U	I (A)	L/R (ms)	Operations
24Vdc	1	0	5,100,000
24Vdc	2	0	3,900,000
24Vdc	3	0	2,900,000
24Vdc	4	0	2,600,000
24Vdc	5	0	2,200,000
24Vdc	1	20	2,700,000
24Vdc	2	20	2,100,000
24Vdc	3	20	1,500,000
24Vdc	3.5	20	1,000,000
24Vdc	1	40	2,000,000
24Vdc	2	40	1,500,000
24Vdc	3	40	1,100,000
24Vdc	3.5	40	800,000
110Vdc	0.3	0	1,000,000
110Vdc	0.5	0	700,000
110Vdc	1	0	190,000
110Vdc	0.3	20	450,000
110Vdc	0.5	20	260,000
110Vdc	1	20	100,000
110Vdc	0.3	40	300,000
110Vdc	0.5	40	180,000
110Vdc	0.6	40	150,000
110Vdc	0.7	40	100,000
132Vdc	0.7	40	70,000

Switching frequency: 1,200 operations/hour.

Sockets and retaining clips		RCG	RDG	Retaining clip
Type of installation	Type of outputs	Model	Model	Retaining clip
	Spring clamp	PAIR080	PAIR160	VM1831
Wall or DIN H35 rail mounting	Screw	50IP20-I DIN	48BIP20-I DIN	VM1831
	Spring clamp	PRIR080	PRIR160	VM1831
Flush mounting	Double faston (4.8 × 0.8 mm)	ADF1	ADF2-BIPOK	VM1831
PCB-mount	Solder	65 ⁽¹⁾	65	VM1841

(1) Suitable for mounting 2 relays side by side.

Mounting tips

The preferred mounting position is on the wall, with the relay positioned horizontally in the reading direction on the nameplate. For correct use of the relays, they should be spaced apart by at least 5 mm in the horizontal direction and 20 mm in the vertical direction. This is to allow correct upward dissipation of the heat generated by the coil. Set these distances according to the socket used. Distances can be reduced depending on the environmental application conditions and on the relay duty cycle.

For maximum reliability in operation, it is advisable to use retaining clips.

No special maintenance is required.

Condensation can form inside the relay when powered up and the outside ambient temperature is cold; this is quite normal and does not affect the operation of the relay. The plastic materials of the relay do not possess hygroscopic properties.

Notes

 		_	_	_		_	_	 _	_	_	_	_								_			INSTANTANEOUS MONOSTABLE WITH FORCIBLY GUIDED CONTACTS
																							INSTANT MONOSTA FORCIBL CON
																							BISTABLE
																							FAST-ACTING (MONOSTABLE AND BISTABLE)
																							TIME DELAY (ON PICK-UP OR DROP-OUT)
																							TIME DELAY WITH FORCIBLY GUIDED ((
																							MEASUREMENT FOR
																							SOCKET NUMBERING EXPLANATIONS
																						 -	FRONT CONNECTION
																						 _	BACK CONNECTION
																						 _	PCB MOUNT
																						-	RETAINING CLIPS
																						_	Ш Ш

69

RGG SERIES with forcibly guided contacts

RGG

PRODUCT ADVANTAGES

- Forcibly guided (mechanically linked) contacts, relay compliant with EN 61810-3, type A
- Weld-no-transfer technology
- Plug-in monostable instantaneous relay
- Suitable for safety applications
- Solid and rugged construction for heavy or intensive duty
- Self-cleaning knurled contacts
- Very long electrical life expectancy and exceptional endurance
- Magnetic arc blow-out for higher breaking capacity
- Wide range of options: LED indicating power on, FLYBACK DIODE
- Retaining clip for secure locking of relay on socket
- Transparent cover, pull-out handle

DESCRIPTION

The relays in the RGG line are highly reliable products featuring high performance, suitable for applications in very harsh and disturbed environments. They are provided with forcibly guided (mechanically linked) contacts. The component conforms to the EN 61810-3 requirements, type A relay (all contacts are mechanically linked). Forcibly guided contacts are also known as weld-no-transfer contacts. A typical application is the check reading of a contact for determining, with absolute certainty, the state of the other contacts in self-monitoring control systems.

Thanks to the exceptional breaking capacity, the relay is suitable for controlling heavy duty loads with intensive switching frequency where safety and electrical continuity is an all-important factor.

The versatility in manufacture allows producing relays with any voltage in the range 12 to 230VDC and with a great number of operating ranges adaptable to the various application requirements.

The types of contacts allow obtaining remarkable performance levels both for high, very inductive loads or very low loads; the optional presence of the **magnetic arc blowout** contributes considerably to the **breaking capacity**. The knurled contacts ensure **better self-cleaning characteristics** and **lower ohmic resistance** thanks to the various points of electrical connection, thereby **improving the electrical life** of the component. In relays with forcibly guided (mechanically linked) or weld-no-transfer contacts, special design and constructional measures are used to ensure that make (normally-open) contacts can not assume the same state as break (normally -closed) contacts.

- If, when powering up a relay, a NC contact fails to open, the remaining NO contacts must not close, maintaining a contact gap ≥ 0.5 mm.
- When the relay is de-energized, if a NO contact fails to open, the remaining NC contact must not close, maintaining a contact gap \geq 0.5 mm.

EN 61810-3 lays down the standard requirements for relays with forcibly guided contacts. This standard defines two types of relay with forcibly guided contacts, namely:

- Type A: Relay whose contacts are all mechanically linked (forcibly guided).
- Type B: Relay containing mechanically linked contacts and contacts which are not mechanically linked.

In the case of relays that include changeover contacts, either the make circuit or the break circuit of a changeover contact can be considered to meet the requirements of this standard.

Models	Number of contacts	Magnetic arc blow-out	
RGG.x3X	4		
RGG.x7X	4	•	

⚠	FOR CONFIGUR	ATION OF PRODUCT CODE, SEE "ORDER	ING SCHEME" TABLE	INST NOM PROR				
ф	Coil specifications	RGGExyX / RGGFxyX	RGGRxyX ⁽³⁾					
	Nominal voltages Un	DC: 12-24-48-110-125-132-144-230 ⁽¹⁾	DC: 24-36-72-110 ⁽¹⁾	ABLE				
	Consumption at Un (DC/AC)	3,5W						
	Operating range	80120% Un	70125% Un					
	Type of duty	Conti	nuous	TING				
	Drop-out voltage ⁽²⁾	DC: > 5% Un						

(1) Other values on request.

(2) Limit value for supply voltage, expressed as % of the nominal value, beneath which the relay is certainly de-energized.

(3) Suitable for application on ROLLING STOCK. Operating range in accordance with EN60077.

	Number and type	4 CO, form C		_ /
Current	Nominal (1)		12A	
	Maximum peak (2)	20A for 1	Imin - 40A for 1s	
	Maximum pulse (2)	150/	A for 10ms	
		RGG.x3: 0.5A - 110Vdc - L/R 40ms ·	- 10 ⁵ Manœuvres - 1,800 operations/hour	_
Example of ele	ctrical life expectancy (3)	RGG.x7: 1A - 110Vdc - L/R 40ms -	10 ⁵ Manœuvres - 1,800 operations/hour	
·	•	1A - 110Vdc - L/R 40ms - 2x10 ⁵ Manœuvres - 600 operations/hour		
Minimum load	Standard contacts	200mV	V (10V, 10mA)	-
	Gold-plated contact	50mW (5V, 5mA)		
Max	imum breaking voltage	350 VDC / 440 VAC		
	Contact material		AgCdO	
		RGG.13X-17X-43X-47X	RGG.33X-37X-63X-67X-53X-57X	
Operating time a	t Un (ms) (4)	DC	DC	
Pick-u	ıp (NC contact opening)	≤ 20	≤ 20	
Pick-	up (NO contact closing)	≤ 35	≤ 4 0	
Drop-ou	ut (NO contact opening)	≤ 10	≤ 55	_
_	out (NC contact closing)	≤ 53	≤ 8 5	

(4) Unless specified otherwise, the operating time signifies until stabilization of the contact (including bounces).

Insulation		
Insulation resistance (at 500Vdc) between electrically independent circuits and between these circuits and ground between open contact parts	> 10,000 ΜΩ > 10.000 ΜΩ	
Withstand voltage at industrial frequency between electrically independent circuits and between these circuits and ground between open contact parts between adjacent contacts Impulse withstand voltage (1.2/50µs - 0.5J)	2 kV (1 min) - 2.2kV (1 s) 2 kV (1 min) - 2.2kV (1 s) 2 kV (1 min) - 2.2kV (1 s)	
between electrically independent circuits and between these circuits and ground between open contact parts	5 kV 4 kV	_

71

CHAUVIN ARNOUX

ENERGY

Mechanical specifications		
	Mechanical life expectancy	10x10 ⁶ operations
Maximum switching rate	Mechanical	3600 operations/h
	Degree of protection	IP40
	Dimensions (mm)	45x50x86 ⁽¹⁾
	Weight (g)	280

(1) Excluding output terminals

Environmental specifications		
Operating temperature Standard	-25 to 55°C	
Version for railways, rolling stock	-25 to 70°C	
Storage and shipping temperature	-50 to 85°C	
Relative humidity	-25 to +70°C (+85°C for 10 min) -40°C as option	
Fire behavior	V0	

<u>a</u>	Standards and reference values		
	EN 61810-1, EN 61810-2, EN 61810-7	Electromechanical elementary relays	
	EN 60695-2-10	Fire behavior	
	EN 60529	Degree of protection provided by enclosures Electromagnetic compatibility	
	EN 61000		
	EN 61810-3, Type A	Relays with forcibly guided (mechanically linked) contacts	

Unless otherwise specified, the products are designed and manufactured according to the requirements of the above-mentioned European and International standards. In accordance with EN 61810-1, all items of technical data are referred to ambient temperature 23 °C, atmospheric pressure 96kPa and 50% humidity. Tolerance for coil resistance, nominal electrical input and nominal power is ±7%.

Ŕ	Railways, rolling stock - Standards	Applicable to RGGRX version	
EN 60077		Electric equipment for rolling stock - General service conditions and general rules	
	EN 61373 ⁽¹⁾	Shock and vibration tests, Cat 1, Class B	
EN 45545-2 Fire behavior, Cat E1		Fire behavior, Cat E10, Requirement R26, V0	
	ASTM E162, E662	Fire behavior	

(1) Permissible opening time of contacts on a de-energized relay t<3ms.

Â	Railways, rolling stock - Special operating ranges				
	Nominal voltage	Minimum pick-up voltage	Maximum operating voltage	Order symbol (1)	
	24 Vdc	16.8	32	Z01	
	36 Vdc	23	42.5	Z01	
	72 Vdc	55	96	Z01	
	110 Vdc	77	144	Z01	

(1) To order the relay with the special operating range, indicate the "Z0x" symbol in the "Keying position" field of the ordering scheme. The special range may be subject to operating specifications different from standard specifications. Please contact us for further information.

Configurations - Option	IS
TROPICALIZATION	Surface treatment of the coil with protective coating for use with RH 95%.
GOLD PLATING	Surface treatment of the contacts, blades and output terminals with gold-cobalt alloy $\geq 2\mu$. This treatment ensures long-term capacity of the contact to conduct lower currents.
LED	LED indicator showing presence of power supply, wired in parallel with the coil.
FLYBACK DIODE	Component connected in parallel with the coil (type 1N4007) designed to suppress overvoltages generated by the coil when de-energized.
TRANSIL	Non-polarized component connected in parallel with the coil. Behaviour is similar to that of a varistor, with faster operating times.
LOW TEMPERATURE	Minimum operating temperature -50°C, only for rolling stock version (option L)

Ordering scheme

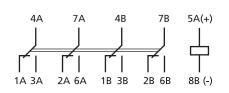
•••	oracing scheme								
	Product code	Application ⁽¹⁾	Configuration A	Configuration B	Label	Type of power supply	Nominal voltage (V) ⁽²⁾	Finish ⁽³⁾	CTING
	RGG	E: Energy F: Railway, Fixed Equipment R: Railway, Rolling Stock	1: Standard 2: Gold plating + Diode // + Led 3: Diode // 4: Gold plating 5: Led 6: Gold plating + Diode // 7: Diode // + Led 8: Transil 9: Transil + Led 0: Gold plating	3X: 4 CO contacts 7X: 4 CO contacts with magnetic arc blow-out	F	C: Vdc	012 - 024 - 036 048 - 072 - 110 125 - 132 - 144 220	Z0x: Special operating range (only for "R" applications) T: Tropicalized coil L: Low temperature	TIME DELAY WITH TIME DELAY FAST-ACTING FORCIBLY GUIDED (ON PICK-UP (MONOSTABLE
			+ Transil + Led						

a	RGG	RGG E 3 7X F C 048							
mple	RGC	GE37XF-C048/T = I	ENERGY series relay	y with flyback diod	e, mag	netic arc blow-ou	t and 48Vdc tropic	alized coil.	
Exal	RGG F 5 3X F C 110								
									1

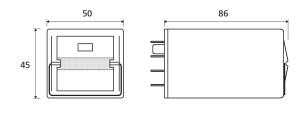
RGGF53XF-C110 = RAILWAY series relay, fixed equipment, with LED indicator and 110Vdc coil.

(1) ENERGY : all applications except for railway.

RAILWAYS, FIXED EQUIPMENT: application on fixed

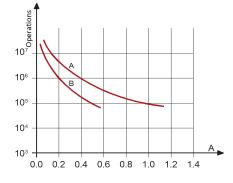

FERROVIAIRE ET ÉQUIPEMENT FIXE : application on fixed power systems and electrical railway traction. Construction according to RFI (FS Group) specification no. RFI DPRIM STF IFS TE 143 A, if applicable. For list of RFI approved and conforming products, consult dedicated catalog "RAILWAY SERIES – RFI APPROVED"

RAILWAYS, ROLLING STOCK: application on board rolling stock (wire-rail-tramway vehicles). Electrical characteristics according to EN60077.


(2) Other values on request.

(3) Optional value: multiple selection possible (e.g. T-L)

Wiring diagram


Dimensions

TION EXPLANATIONS

Electrical life expectancy

Contact loading: 110Vdc, L/R 40 ms Curve A: RGG_x7X Curve B: RGG_x3X

RGG.x3X										
U	I (A)	L/R (ms)	Operations							
110 Vdc	0.5	40	100,000							
110 Vdc	0.6	10	300,000							
120 Vdc	0.7	40	50,000							
125 Vdc	1.2	0	1,000,000							
220 Vdc	0.1	40	100,000							
220 Vdc	0.25	10	100,000							
U	I (A)	cosφ	Operations							
110 Vac	1	1	2,000,000							
110 Vac	1	0.5	1,500,000							
110 Vac	5	1	1,000,000							
110 Vac	5	0.5	500,000							
220 Vac	0.5	1	2,000,000							
220 Vac	1	0.5	600,000							
220 Vac	5	1	650,000							
220 Vac	5	0.5 600,000								

	RG	iG.x7X					
U	I (A)	L/R (ms)	Operations				
24 Vdc	1	0	7,000,000				
24 Vdc	1	40	3 000,000				
24 Vdc	2	40	2,000,000				
24 Vdc	5	0	3,000,000				
24 Vdc	5	40	200,000				
24 Vdc	9	0	800,000				
48 Vdc	5	20	200,000				
110 Vdc	0.4	40	1,000,000				
110 Vdc	1	40	200,000 (1)				
110 Vdc	10	0	100,000				
U	I (A)	cosφ	Operations				
220 Vac	5	0.5	100,000				
220 Vac	10	1	100,000				
230 Vac	1	0.7	2,500,000				
230 Vac	3	0.7	1,200,000				

Switching frequency: 1,200 operations/hour ⁽¹⁾ 600 operations/hour

Sockets and retaining clips					
Type of installation	Type of outputs	Model	Retaining clip		
	Screw	96IP20-I DIN	DC 49		
Wall or DIN rail mounting	Spring clamp	PAIR320	- RG48		
	Screw	43IL	RG43		
Flush mounting	Spring clamp	PRIR160	- RG48		
	Double faston (4.8 × 0.8 mm)	ADF2			

Mounting tips

The preferred mounting position is on the wall, with the relay positioned horizontally in the reading direction on the nameplate. For correct use of the relays, they should be spaced apart by at least 5 mm in the horizontal direction and 20 mm in the vertical direction. This is to allow correct upward dissipation of the heat generated by the coil. Set these distances according to the socket used. Distances

can be reduced depending on the environmental application conditions and on the relay duty cycle.

For maximum reliability in operation, it is advisable to use retaining clips.

No special maintenance is required.

Condensation can form inside the relay when powered up and the outside ambient temperature is cold; this is quite normal and does not affect the operation of the relay. The plastic materials of the relay do not possess hygroscopic properties.

Some examples of electrical life expectancy

Notes

																											OUS WITH UIDED
	·	 -1	· · · ·		1	,	 		 	 								 				 ,		· · · · ·]		ITANE TABLE LLY GU VTACT
					-			_		 _	\dashv	-	$ \rightarrow$		_	_		 _		_	_						VSTAN NOST ORCIB CO
										 _	\dashv	-															₹0₽ ₽
					-					 	\dashv	-		_	_	_		 		_	_						
										 	\dashv	_	\rightarrow	_	_	_		 	_	_	_						ABLE
				_					 	 	\dashv	-+	\rightarrow	_	_			 	_	-							BIST
Image: Sector											_							 									
		_									-				_	_		 									
Image: Section of the section of th									 	 	-							 									ABLE ABLE
Model Model <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td> </td><td>+</td><td>_</td><td>\rightarrow</td><td>_</td><td>_</td><td>_</td><td></td><td> </td><td>_</td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td>T-AC1 VOST, BIST/</td></td<>										 	+	_	\rightarrow	_	_	_		 	_	_							T-AC1 VOST, BIST/
Model Model <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td> </td><td></td><td>-</td><td></td><td></td><td>_</td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>FAS (MON AND</td></td<>									 		-			_	_												FAS (MON AND
		_									-			_	_											_	
Machine		_									_			_	_												× ª Ê
Machine									 		_																DELA CK-U DP-OL
Machine		_							 		+			_				 									IME I ON PI
MONONLY MONOLULU MONOLULUU MONOLULU MONOLULU MONOLULU MONOLULU MONOLULUU MONOLUUU MONOLUUUU MONOLUUUUU MONOLUUUUU MONOLUUUU MONOLUUUUU				_					 	 	+			-	-	_		 	-	_	_						н О Ц
MONONLY											-			_					-								тΩ
Model Model <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td>-</td><td></td><td></td><td>_</td><td>-</td><td></td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>UIDE</td></td<>							_				-			_	-				_								UIDE
Model Model <td< td=""><td></td><td></td><td></td><td>_</td><td></td><td></td><td>_</td><td></td><td></td><td></td><td>-</td><td></td><td>-</td><td>_</td><td></td><td></td><td>_</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>ELAY 3LY G NTAC</td></td<>				_			_				-		-	_			_										ELAY 3LY G NTAC
MONONLY							_				-				_				_								MED
Image: Section of the section of th									 		-			_													Εŭ
Image: Section of the section of th		_									+																LZ
Image: Section of the section of th											-																EME
Image: Section of the section of th											-																ASUF
I I I I I											-																
Market Ma											-																
Market Ma											-																ING
Market Ma											-																OCKE 1BER ANAT
Market Ma											+																NUN
Image: Second																										_	_
Image: Second																											Z
Image: Second																											ONT
Image: Second																											FRO
												-															Ŭ
												-														_	
																											NOL
																											BACK
																											CON
Provide the second seco																										_	
Image: Sector of the sector																											F
																											NNO
																											SB
																											0.
																										_	ω.
																											CLIP
Market All Market All <td></td> <td>DNIN</td>																											DNIN
																											RETAII
																										_	LL

75

RMGX SERIES with forcibly guided contacts

USER SECTORS

RMGR16X_3

PRODUCT ADVANTAGES

- Mechanically linked contacts, relay compliant with IEC EN 61810-3, type A
- Weld-no-transfer technology
- Plug-in monostable instantaneous relay
- Suitable for safety applications
- Solid and rugged construction for heavy or intensive duty
- Self-cleaning knurled contacts
- Very long electrical life expectancy and exceptional endurance
- Magnetic arc blow-out (optional) for higher breaking capacity
- Wide range of options: LED indicating power on, FLYBACK DIODE
- Transparent cover, with access for manual operation (standard) and pull-out handle
- Retaining clip for secure locking of relay on socket

DESCRIPTION

RMGX relays are highly reliable products offering top performance, suitable for applications in particularly harsh and unsettled environments. Meeting the requirements of standard **EN 61810-3 type A**; the relay is equipped with mechanically linked contacts (forcibly guided), an indispensable feature for applications where there is a need to guarantee that make (NO) contacts will never assume the same status as break (NC) contacts. Forcibly guided contacts are also known as weld-no-transfer contacts. With change-over contacts, customers have the greatest possible flexibility in selecting the configuration (6 NC + 2 NO, 5 NC + 3 NO, etc.) best suited to their particular needs.

Thanks to its exceptional breaking capacity, the relay is suitable for **controlling heavy duty loads with intensive switching frequency**, where safety and continuity of operation are all-important. Manual operation as standard for all models, allowing tests to be conducted in the absence of any power supply. The contacts used are of a type designed to give top performance both with high and strongly inductive DC loads, and with particularly low loads; inclusion of the **magnetic arc blow-out function** (optional) helps to achieve a considerable increase in breaking capacity.

Knurled contacts ensure not only better **self-cleaning** characteristics, but also lower ohmic resistance thanks to multiple points of electrical connection, thereby extending the electrical life expectancy of the component. In relays with forcibly guided (mechanically linked) or weld-no-transfer contacts, special design and constructional measures are used to ensure that make (normally-open) contacts can not assume the same state as break (normally -closed) contacts.

- If, when powering up a relay, a NC contact fails to open, the remaining NO contacts must not close, maintaining a contact gap ≥0.5 mm.
- When the relay is de-energized, if a NO contact fails to open, the remaining NC contact must not close, maintaining a contact gap ≥0.5 mm.

EN 61810-3 lays down the standard requirements for relays with forcibly guided contacts. This standard defines two types of relay with forcibly guided contacts, namely:

- Type A: Relay whose contacts are all mechanically linked (forcibly guided).
- Type B: Relay containing mechanically linked contacts and contacts which are not mechanically linked.

In the case of relays that include changeover contacts, either the make circuit or the break circuit of a changeover contact can be considered to meet the requirements of this standard.

Models	Number of contacts	Magnetic arc blow-out
RMG.x2X	6 CO + 2 NC	
RMG.x6X	6 CO + 2 NC	•

A

FOR CONFIGURATION OF PRODUCT CODE, SEE "ORDERING SCHEME" TABLE

ф	Coil specifications	RMGExyX - RMGFxyX	RMGRxyX	
	Nominal voltages Un	DC: 24-48-110-125-132-220 ⁽¹⁾	DC: 24-36-72-96-110 ⁽²⁾	
	Consumption at Un (DC/AC)	3	W	- AISTAR
	Operating range	DC: 80÷115% Un	DC: 70÷125% Un	
	Type of duty	Conti	inuous	
	Drop-out voltage ⁽³⁾	DC: >	5% Un	

(1) Other values on request.


(2) Suitable for application on rolling stock. Operating range in compliance with EN 60077 standard.

(3) Limit value for supply voltage, expressed as % of the nominal value, beneath which the relay is certain to be de-energized.

RMG.32X-36X-62X-66X-52X-56X	RMG.12X-16X-42X-46X	ons	Contact specificat				
NA, form C	6 CO + 2	Number and type					
 nin - 40A for 1s	See following graph 20A for 1min - 40A for 1s 150A for 10ms						
 - 10 ⁵ operations - 1,800operations /hour 10 ⁵ operations - 1,800operations /hour		ctrical life expectancy	Example of electrical life expectancy				
 (10V, 10mA) (5V, 5mA)		Standard contacts Gold-plated contacts	Minimum load				
 C / 440 VAC	350 VDC / 440 VAC						
gCdO	Ac	Contact material					
DC ≤ 35		Operating time at Un (ms) ⁽²⁾ Pick-up (NC contact opening)					
≤ 60		o (NO contact closing)	•				
≤ 4 ≤ 45		Drop-out (NO contact opening) Drop-out (NC contact closing)					

(1) Maximum peak and pulse currents are those currents that can be handled, for a specified time, by the contact. They do not refer to steady or interrupted currents. (2) Unless specified otherwise, the operating time signifies until stabilization of the contact (including bounces).

Rated current contact

Note: reduction of 30% on all the contacts simultaneously.

FRONT CONNECTION

BACK CONNECTION

PCB MOUNT

CIBLY GUIDED

77

CHAUVIN ARNOUX

ENERG

Insulation	
Insulation resistance (at 500 VDC)	
between electrically independent circuits and between these circuits and ground	> 10,000 MΩ
between open contact parts	> 10,000 MΩ
Withstand voltage at industrial frequency	
between electrically independent circuits and between these circuits and ground	2 kV (1 min) - 2.2 kV (1 s)
between open contact parts	2 kV (1 min) - 2.2 kV (1 s)
between adjacent contacts	2 kV (1 min) - 2.2 kV (1 s)
Impulse withstand voltage (1,2/50µs - 0,5J)	
between electrically independent circuits and between these circuits and ground	5 kV
between open contact parts	5 kV

()	Mechanical specifications	
	Mechanical life expectancy	10x10 ⁶ operations
	Maximum mechanical switching rate	3,600 operations/h
_	Degree of protection	IP50 fitted to socket
	Dimensions (mm)	45x90x100 ⁽¹⁾
	Weight (g)	380

"(1) Excluding output terminals

Environmental specifications							
Standard operating temperature standard	-25 to +55 °C						
Version for railways, rolling stock (RMGR)	-25 to +70°C (+85°C for 10 min) -40°C as option						
Storage and shipping temperature	-25 to +85°C						
Relative humidity	Standard: 75% RH - Tropicalized: 95% RH						
Fire behavior	V0						

Q	Standards and reference values	
	EN 61810-1, EN 61810-2, EN 61810-7	All-or-nothing relays
	EN 61810-3, type A	Relays with forcibly guided (mechanically linked) contacts
	EN 60695-2-10	Fire behavior
	EN 60529	Degree of protection provided by enclosures

Unless otherwise specified, products are designed and manufactured to the requirements of the European and International standards indicated above. In accordance with EN 61810-1, all items of technical data are referred to ambient temperature 23 °C, atmospheric pressure 96kPa and 50% humidity. Tolerance for coil resistance, nominal electrical input and nominal power is ±7%.

Railways, rolling stock - Standards	Applicable to RMGRX version
EN 60077	Electric equipment for rolling stock - General service conditions and general rules
EN 61373 ⁽¹⁾	Shock and vibration tests, cat 1, class B
EN 45545-2	Fire behavior, cat EL10, requirement R26, V0
ASTM E162, E662	Fire behavior

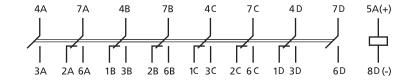
(1) Opening of NC contacts allowed only at de-energized relay t<3ms.

Configurations - Option	s
TROPICALIZATION	Surface treatment of coil with protective coating for use in conditions of RH 95%. This treatment serves to give the coil added protection against corrosion that could occur as a result of moisture reacting with certain chemical agents such as those found in acid or saline atmospheres.
GOLD PLATING	Surface treatment of contacts, blades and output terminals with gold, thickness $\geq 2\mu$. This treatment ensures long-term capacity of the contact to conduct low levels of current, even in adverse ambient conditions.
LED	long-term capacity of the contact to conduct low levels of current, even in adverse ambient conditions.
FLYBACK DIODE	Component connected in parallel with the coil designed to suppress overvoltages generated by the coil whe de-energized.
LOW TEMPERATURE	Minimum operating temperature -40°C, only for rolling stock version (option "L").

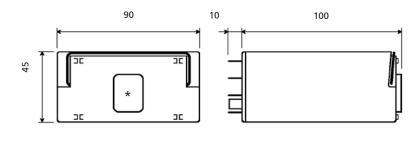
dering sc	neme							
Product code	Application (1)	Configuration A	Configuration B	Label	Type of power supply	Nominal voltage (V) ⁽²⁾	Finish ⁽³⁾	Keying position code ⁽⁴⁾
RMG	E: Energy F: Railway Fixed Equipment R: Railway Rolling stock	1: Standard 2: Dorure + Diode // + Led 3: Diode // 4: Dorure 5: Led 6: Dorure + Diode // 7: Diode // + Led	2X: 6 CO contacts + 2 NO 6X: 6 CO contacts + 2 NO with magnetic arc blow-out	F	C: Vdc	024 - 036 - 048 072 - 096 - 110 125 - 132 - 220	T: Tropicalized coil L: Low temperature	XX
RMG	E	3	6X	F	C	048	т	

	RMG	E	3	6X	F	C	048	Т	
nple	RMGE	36XF-C048/T = EN	IERGY series rela	y with back EMF supp	oressio	n diode, magneti	c arc blow-out a	nd 48Vdc tropic	alized coil.
Exar	RMG	R	7	2X	F	С	110		
		RMGR72XF-	C110 = RAILWAY	series relay, equipped	d with f	lyback diode and	d indicator Led a	nd 110Vdc coil.	

1. ENERGY : all applications except for railway.


RAILWAYS, FIXED EQUIPMENT: application on fixed power systems and electrical railway traction. Construction according to RFI (FS Group, Italy) specification n° RFI DPRIM STF IFS TE 143 A, if applicable for list of RFI approved and conforming products, consult dedicated catalog "RAILWAY SERIES - RFI APPROVED" RAILWAYS, ROLLING STOCK: Application on board rolling stock. Electrical characteristics according to EN60077.

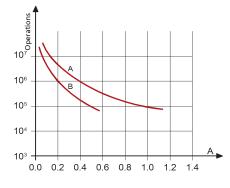
2. Other values on request.


3. Optional value.

4. Optional value. The positive mechanical keying is applied according to the manufacturer's model.

Wiring diagram

Dimensions



RMG.x2X - RMG.x6X

(*) access to the manual operating lever

Electrical life expectancy

Contact loading: 110Vdc, L/R 40 ms Curve A: RMG.x6X Curve B: RMG.x2X

RMG.x2X											
U	I (A)	L/R (ms)	Operations								
110 Vdc	0.5	40	100,000								
110 Vdc	0.6	10	300,000								
120 Vdc	0.7	40	50,000								
125 Vdc	1.2	0	1,000,000								
220 Vdc	0.1	40	100,000								
220 Vdc	0.25	10	100,000								
U	I (A)	cosφ	Operations								
110 Vac	1	1	2,000,000								
110 Vac	1	0.5	1,500,000								
110 Vac	5	1	1,000,000								
110 Vac	5	0.5	500,000								
220 Vac	0.5	1	2,000,000								
220 Vac	1	0.5	600,000								
220 Vac	5	1	650,000								
220 Vac	5	0.5	600,000								

		RN	1G.x6X								
1	U	I (A)	L/R (ms)	Operations							
	24 Vdc	1	0	7,000,000							
	24 Vdc	1	40	3,000,000							
	24 Vdc	2	40	2,000,000							
	24 Vdc	5	5 0								
	24 Vdc	5	40	200,000							
	24 Vdc	9	0	800,000							
	48 Vdc	5	20	200,000							
	110 Vdc	0.4	40	1,000,000							
	110 Vdc	1	40	100,000							
	110 Vdc	10	0	100,000							
	U	I (A)	cosφ	Operations							
	220 Vac	5	0.5	100,000							
	220 Vac	10	1	100,000							
	230 Vac	1	0.7	2,500,000							
	230 Vac	3	0.7	1,200,000							

Switching frequency: 1,200 operations/hour

Sockets and retaining clips							
Type of installation	Type of outputs	Model	Retaining clip				
	Screw	96IP20-I DIN					
Wall or DIN rail mounting	Spring clamp	PAIR320	RMC48				
	Double faston (4.8 x 0.8 mm)	ADF4-E1					
Flush mounting	Spring clamp	PRIR321					

Mounting tips

The preferred mounting position is on the wall, with the relay positioned horizontally in the reading direction on the nameplate. To ensure correct use of the relays, they should be spaced apart by at least 20 mm in the vertical direction; this will allow the heat generated by the coils to rise and dissipate as necessary. Check the distances according to the socket used. These distances can be reduced, depending on the environmental conditions during operation and on the relay duty cycle.

Retaining clips are used to ensure that the relay is secured correctly to the socket.

No special maintenance is required.

Condensation can form inside the relay when powered up and the outside ambient temperature is cold; this is quite normal and does not affect the operation of the relay. The plastic materials of the relay do not possess hygroscopic properties.

Notes

 		_	_	_		_	_	 _	_	_	_	_								_			INSTANTANEOUS MONOSTABLE WITH FORCIBLY GUIDED CONTACTS
																							INSTANT MONOSTA FORCIBL CON
																							BISTABLE
																							FAST-ACTING (MONOSTABLE AND BISTABLE)
																							TIME DELAY (ON PICK-UP OR DROP-OUT)
																							TIME DELAY WITH FORCIBLY GUIDED ((
																							MEASUREMENT FOR
																							SOCKET NUMBERING EXPLANATIONS
																						 -	FRONT CONNECTION
																						 _	BACK CONNECTION
																						 _	PCB MOUNT
																						-	RETAINING CLIPS
																						_	Ш Ш

MONOSTABLE INSTANTANEOUS

INSTANTANEOUS MONOSTABLE WITH FORCIBLY GUIDED

BISTABLE

FAST-ACTING (MONOSTABLE AND BISTABLE)

TIME DELAY (ON PICK-UP OR DROP-OUT)

> LAY WITH LY GUIDED ITACTS

MEASUREME

SOCKET NUMBERING EXPLANATIONS

> FRONT CONNECTION

BISTABLE RELAYS

RGBF14

RGBE13

PRODUCT ADVANTAGES.

- Plug-in instantaneous bistable relay
- Solid and rugged construction for heavy or intensive duty
- Very long electrical life expectancy and notable endurance
- Magnetic arc blow-out for higher breaking capacity
- Fitted with mechanical optical contact status indicator as standard
- Lever for manual operation (optional)
- Self-cleaning knurled contacts
- Pulsed or permanent power supply, a.c. or d.c.
- Wide variety of configurations and customizations
- Retaining clip for secure locking of relay on socket
- Label holder in cover for customer's use
- Positive mechanical keying for relay and socket

DESCRIPTION

The bistable relays in the RGB series are reliable products offering high performance. These components have 2 stable operating states, which means that they are able to hold their current position in the event of a power supply failure, thereby guaranteeing that this can be stored as "memory" information should system faults occur during subsequent cycles. Given their superior reliability and durability, RGB relays are capable of filling roles that call for a high level of responsibility; in effect, they are used in environments where continuous duty is an essential requirement (e.g. high voltage electricity distribution stations and medium voltage substations). All models are equipped with an automatic coil de-energization system, operated mechanically or electronically, designed to reduce the power consumption of the device to zero once the operating cycle has been completed.

Thanks to its exceptional breaking capacity, the relay is suitable for controlling **heavy duty loads** with intensive switching frequency, where safety and continuity of operation are all-important. A product of proven reliability, as demonstrated by its use for over **40 years in electrical energy** transmission and distribution systems, and fixed equipment used in the railway sector. Benefiting also from careful selection of materials, coupled with the technical and professional skills of human resources involved in design and production, this family of relays has found favour with many important and high profile customers.

The versatility in manufacture allows producing relays with any voltage in the range 12 to 250VDC/440VAC and with a great number of operating ranges adaptable to the various application requirements.

The contacts used are of a type designed to give notable levels of performance both with high and strongly inductive loads, and with particularly low loads. **Knurled contacts** ensure not only better **self-cleaning** characteristics, but also lower ohmic resistance thanks to multiple points of electrical connection, thereby extending the electrical life expectancy of the component.

In the case of the version with 3 contacts, there is also the facility of **manual operation**, so that tests can be performed even in the absence of electrical power. Like all our relays, models in the G series are assembled as part of a controlled manufacturing process in which every step of production is verified by the next step in succession. In effect, each relay is calibrated and tested individually, by hand, in such a way as to guarantee top reliability.

Models		Number of contacts	Power input to coils
	RGBEx3	3	Common negative
	RGBEx4	4	Coils galvanically separated

 Λ

FOR CONFIGURATION OF PRODUCT CODE, SEE "ORDERING SCHEME" TABLE

ф	Coil specifications		MON FOR
	Nominal voltages Un (1)	DC / AC: 12-24-48-110-125-132-144-230-380 ⁽²⁾ -440 ⁽²⁾	
	Consumption at Un (DC/AC) ⁽³⁾	15W / 15VA	BLE
	Operating range	80120% Un	BISTA
	Type of duty	Continuous	

Minimum control pulse 50ms. (1) Other values on request.

(2) Maximum value, a.c. = 380V 50Hz - 440V 60Hz.

(3) Latch and unlatch. Power consumption is zero on completion of the operating cycle, as the coil de-energizes automatically.

Current	Number and type Nominal ⁽¹⁾ Maximum peak ⁽²⁾ Maximum pulse ⁽²⁾	12 20A for 1mir	O, form C 2A n - 40A for 1s for 10ms	_
Example of ele	ectrical life expectancy (3)	0.5 A - 110 Vdc - L/R 40ms - 10 ⁵ o	perations - 1,200 operations/hour	
Minimum load	Standard contacts Gold-plated contacts		0 V, 10 mA) 5 V, 5 mA)	
Maximum breaking voltage		350 VDC	/ 440 VAC	
	Contact material	AgCdO		
		RGB.13-33-43	RGB.14-34-44	
TOperating time	e at Un (ms) (4)	DC - AC	DC - AC	
Pick-u	ıp (NC contact opening)	≤ 9 - ≤ 20	≤ 9 - ≤ 20	
Pick-	up (NO contact closing)	≤ 30 - ≤ 35	≤ 30 - ≤ 35	
Drop-ou	ut (NO contact opening)	≤7 - ≤21	≤7 - ≤21	
Dron	out (NC contact closing)	≤ 45 - ≤ 65	≤ 45 - ≤ 55	

(4) Unless specified otherwise, the operating time signifies until stabilization of the contact (including bounces).

f	Insulation		NOL
	Insulation resistance (at 500Vdc) between electrically independent circuits and between these circuits and ground between open contact parts	> 10,000 MΩ > 10,000 MΩ	FRONT CONNECTION
	Withstand voltage at industrial frequency between electrically independent circuits and between these circuits and ground between open contact parts between adjacent contacts Impulse withstand voltage (1.2/50µs - 0.5J)	2 kV (1 min) - 2.2 kV (1 s) 2 kV (1 min) - 2.2 kV (1 s) 2 kV (1 min) - 2.2 kV (1 s)	BACK
	between electrically independent circuits and between these circuits and ground between open contact parts	5 kV 5 kV	

Mechanical specifications		RGB.x3	RGB.x4	
	Mechanical life expectancy	20x10 ⁶ o	perations	
Maximum switching rate	Mechanical	900 opera	tions/hour	
	Degré de protection	IP	40	
	Dimensions (mm)	45x50x86 ⁽¹⁾	45x50x112 ⁽¹⁾	
	Weight (g)	270	350	

(1) Excluding output terminals

• .	Environmental specifications	
	Operating temperature	-25 to +55°C
	Storage and shipping temperature	-25 to +70°C
	Relative humidity	Standard: 75% RH - Tropicalized: 95% RH
	Fire behavior	VO

ē,	Standards and reference values	
	EN 61810-1, EN 61810-2, EN 61810-7	Electromechanical elementary relays
	EN 60695-2-10	Fire behavior
	EN 61000	Electromagnetic compatibility
	EN 60529	Degree of protection provided by enclosures

Unless otherwise specified, products are designed and manufactured according to the requirements of the European and International standards indicated above. In accordance with EN 61810-1, all items of technical data are referred to ambient temperature 23 °C, atmospheric pressure 96kPa and 50% humidity. Tolerance for coil resistance, nominal electrical input and nominal power is ±7%.

Configurations - Options	
TROPICALIZATION	Surface treatment of the coil with protective coating for use with RH 95%.
GOLD PLATING	Surface treatment of contacts, blades and output terminals with gold-cobalt, thickness $\ge 2\mu$. This treatment ensures long-term capacity of the contact to conduct lower currents.
FLYBACK DIODE	Component connected in parallel with the coil (type 1N4007) designed to suppress overvoltages generated by the coil when de-energized.
LEVER FOR MANUAL	Allows manual operation of the relay, with the cover closed, using a screwdriver.

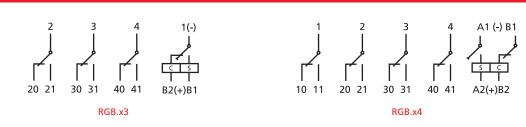
Ordering s	Ordering scheme							
Product code	Application (1)	Configuration A	Configuration B	Label	Type of power supply	Nominal voltage (V) (2)	Finish ⁽³⁾	Keying position code ⁽⁴⁾
RGB	E: Energy F: Railway Fixed Equipment	1: Standard 3: Diode // 4: Gold plating 6: Gold plating + Diode //	3: 3 CO contacts 4: 4 CO contacts	F	C: Vdc A: Vac 50 Hz H: Vac 60 Hz	012 - 024 - 048 110 - 125 - 132 144 - 220 - 230 380 - 440	T: Tropicalized coil M: Manual operation ⁽⁵⁾	ххх

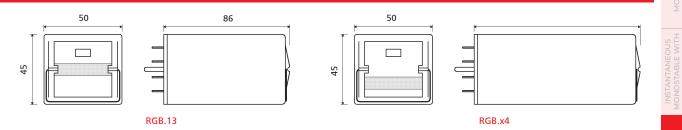
xample	RGB	E	3	3	F	С	048	Т	
Exam		RGBE3	3F-C048/T = ENERGY	eries relay with 3	CO cont	tacts, flyback di	ode and 48Vdc tr	opicalized coil.	

(1) ENERGY: all applications except for railway.

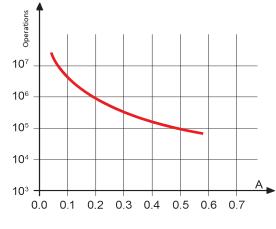
RAILWAYS, FIXED EQUIPMENT: application on fixed power systems and electrical railway traction. For list of RFI compliant and type-approved products, consult dedicated catalog "RAILWAY SERIES – RFI APPROVED".

Also available is the STATIONS series, with ENEL approved material meeting LV15/LV16 specifications. For list of ENEL compliant and type-approved products, consult dedicated catalog "STATIONS SERIES - LV15-LV16-LV20"


(2) Other values on request. Voltages 380V and 440V available as Vac only.


(3) Optional value. Multiple selection possible (e.g. TM).

(4) Optional value. Positive mechanical keying is applied according to the manufacturer's model.


(5) With manual operation, no optical indicator.

Wiring diagram

Electrical life expectancy

Contact loading:	110Vdc,	L/R 40 ms
------------------	---------	-----------

I (A)	L/R (ms)	Operations
0.5	40	100,000
0.6	10	300,000
0.7	40	50,000
1.2	0	1,000,000
0.1	40	100,000
0.25	10	100,000
I (A)	cosφ	Operations
1	1	2,000,000
1	0.5	1,500,000
5	1	1,000,000
5	0,5	500,000
0.5	1	2,000,000
1	0.5	600,000
5	1	650,000
5	0.5	600,000
	0.5 0.6 0.7 1.2 0.1 0.25 1 (A) 1 1 5 5 0.5 1 5 0.5 1 5	0.5 40 0.6 10 0.7 40 1.2 0 0.1 40 0.25 10 1 (A) cosφ 1 1 1 0.5 5 1 5 0,5 0.5 1 1 0.5 5 1 5 1 1 0.5 5 1 1 0.5 5 1 1 0.5 5 1 1 0.5 5 1

Switching frequency: 1,200 operations/hour

Sockets and retaining clips		Model	RGBEx3	RGBEx4-x5
Type of installation Type of outputs			Retain	ing clip
Wall or DIN rail mounting	Screw	PAVG161		VM1222
Flush mounting	Double faston (4.8 x 0.8 mm)	PRDG161	VM1221	
Screw		PRVG161		

Mounting tips

The preferred mounting position is on the wall, with the relay positioned horizontally in the reading direction on the nameplate. For safe and secure operation, it is advisable to use retaining clips.

No special maintenance is required.

BACK CONNECTION

SOCKET NUMBERING EXPLANATIONS

RMBX SERIES

RMBZ12X_3

PRODUCT ADVANTAGES

- Plug-in instantaneous latching relay
- Compact dimensions than RMB Series
- Solid and rugged construction for heavy or intensive duty
- Self-cleaning knurled contacts
- Pulsed or permanent power supply and de-energization system
- Long electrical life expectancy and exceptional endurance
- Operation with DC or AC power supply
- Fitted with mechanical optical contact status indicator as standard
- Transparent cover, with access for manual operation (standard) and pull-out handle
- Retaining clip for secure locking of relay on socket
- Wide variety of configurations and customizations
- Positive mechanical keying for relay and socket

DESCRIPTION .

RMBX relays are derived from models in the RMB line, offering the same specifications and performance and available with a generous number of contacts (up to 8); in short, highly reliable products providing top performance and suitable for applications in particularly harsh and unsettled environments, such as high voltage electricity distribution stations and medium voltage substations, rail transport and rolling stock applications. The mechanical design of the relay is such as to allow the development of numerous custom solutions, in the event that the standard models do not fully respond to the required performance parameters.

Thanks to its exceptional breaking capacity, the relay is suitable for controlling **heavy duty loads where safety** and continuity of operation are all-important.

Versatility in manufacture allows the production of relays with any voltage between 12 and 250Vd.c./230Va.c., and with a variety of operating ranges adaptable to different application requirements.

Manual operation is foreseen for all models, allowing tests to be conducted in the absence of any power supply. RMBX relays are equipped with an automatic coil de-energization system, operated mechanically, designed to reduce the power consumption of the device to zero on completion of the cycle. The contacts used are of a type designed to give **top performance both with high and strongly inductive loads**, and with particularly low loads.

Knurled contacts ensure not only better **self-cleaning** characteristics, but also lower ohmic resistance thanks to multiple points of electrical connection, thereby extending the electrical life expectancy of the component.

Benefiting from careful selection of materials, plus the technical and professional skills of human resources involved in design and production, this is a product suitable for the most demanding of environments.

Like all our relays, these models are assembled as part of a controlled manufacturing process in which every step of production is verified by the next step in succession. **Each relay is calibrated and tested individually**, by hand, so as to guarantee top reliability.

Models Number of contacts Power in		Power input to coils	MONOS"
RMB.x3X	7	Common negative	-
RMB.x2X ⁽¹⁾	8	Common negative	OUS WITH

(1) Model RMBR.x2X suitable for rolling stock applications

 \wedge

FOR CONFIGURATION OF PRODUCT CODE, SEE "ORDERING SCHEME" TABLE

ф Coi	l specifications	RMB.x3X, RMB.x2X	RMBR.x2X
	Nominal voltages Un	DC: 12-24-48-110-125-132-220 ⁽¹⁾ - AC: 12-24-48-110-125-230-380-440 ⁽¹⁾	DC: 24 - 36 - 72 - 96 - 110 ⁽³⁾
	Consumption at Un (DC/AC) ⁽²⁾	RMB.x3X: 15W / 15VA - RMB.x2: 19W / 19VA	19W / 19VA
	Operating range	DC: 80÷120% Un - AC: 85÷110% Un	DC: 70÷125 % Un
	Type of duty	Continuous	

Minimum control pulse: 50ms.

(1) Other values on request.

(2) Latch and unlatch. Power consumption is zero on completion of the operating cycle, as the coil de-energizes automatically.

(3) Suitable for rolling stock applications. Operating range in compliance with EN 60077 standard.

specifications	RMBE.x3X	RMB.x2X	2 4
Number and type	7 CO,form C	8 CO, form C	
Nominal (1)		DA	TIME
Maximum peak (2)	20A for 1mi	n - 40A for 1s	
Maximum pulse ⁽²⁾	150A f	or 10ms	
e of electrical life expectancy ⁽³⁾	0.7 A - 132 Vdc - L/R 40ms - 10 ⁵ d	operations - 600 operations/hour	ME DELAY WITH
m load Standard contacts	200 mW (1	0 V, 10 mA)	E C
Gold-plated contacts	50 mW (!	5 V, 5 mA)	F
Maximum breaking voltage	350 VDC	/ 440 VAC	
Contact material	Ag	CdO	
Operating time at Un (ms) (4)	DC - AC	DC - AC	2
Pick-up (NC contact opening)	≤ 25 - ≤ 25	≤ 25 - ≤ 25	
Pick-up (NO contact closing)	≤ 45 - ≤ 40	≤ 28 - ≤ 35	
Drop-out (NO contact opening)	≤ 12 - ≤ 25	≤ 10 - ≤ 20	KET ST
Drop-out (NC contact closing)	≤ 45 - ≤ 55	≤ 4 3 - ≤ 5 3	

(1) On all contacts simultaneously, reduction of 30%.

(2) Maximum peak and pulse currents are those currents that can be handled, for a specified time, by the contact. They do not refer to steady or interrupted currents.

(3) For other examples, see electrical life expectancy curves.

(4) Unless specified otherwise, the operating time signifies until stabilization of the contact (including bounces).

ulation		-
ulation resistance (at 500VCD)		
between electrically independent circuits and between these circuits and ground	> 10,000 MΩ	
between open contact parts	> 10,000 Μ Ω	
thstand voltage at industrial frequency		
between electrically independent circuits and between these circuits and ground	2 kV (1 min) - 2.2 kV (1 s)	
between open contact parts	2 kV (1 min) - 2.2 kV (1 s)	
between adjacent contacts	2 kV (1 min) - 2.2 kV (1 s)	
Impulse withstand voltage (1,2/50µs - 0,5J)		
between electrically independent circuits and between these circuits and ground	5 kV	
between open contact parts	4 kV	

FRONT CONNECTION

CHAUVIN ARNOUX

Mechanical life expectancy	10x10 ⁶ operations
Maximum mechanical switching rate	900 operations/hour
Degree of protection	IP50 fitted to socket
Dimensions (mm) (1)	45x90x100 ⁽¹⁾
Weight (g)	RMB.x3X: 400 RMB.x2X: 410

Environmental specifications					
Standard operating temperature	standard	-25 to +55 °C			
Version for railways, rolling stock (RMBR)		-25 to +70°C (+85°C for 10 min) -40°C as option			
Storage and shipping temperature		-25 to +85°C			
Relative humidity		Standard: 75% RH - Tropicalized: 95% RH			
Fire behavior		V0			

Standards and reference values	
EN 61810-1, EN 61810-2, EN 61810-7	All-or-nothing relays
EN 61810-3, type A	Guided contact relays (mechanically linked), type A
EN 60695-2-10	Fire behavior
EN 60529	Degree of protection provided by enclosures
	EN 61810-1, EN 61810-2, EN 61810-7 EN 61810-3, type A EN 60695-2-10

Unless otherwise specified, products are designed and manufactured to the requirements of the European and International standards indicated above. In accordance with EN 61810-1, all items of technical data are referred to ambient temperature 23 °C, atmospheric pressure 96kPa and 50% humidity. Tolerance for coil resistance, nominal electrical input and nominal power is $\pm 7\%$.

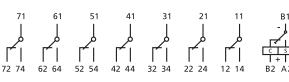
Railways, rolling stock - Standards	Applicable to RMBR model
EN 60077	Electric equipment for rolling stock - General service conditions and general rules
EN 61373 ⁽¹⁾	Shock and vibration tests, cat 1, class B
EN 45545-2	Fire behavior, cat EL10, requirement R26, V0
ASTM E162, E662	Fire behavior

(1) Opening of NC contacts allowed only at de-energized relay t<3ms.

Configurations - Option	s
TROPICALIZATION	Surface treatment of coil with protective coating for use in conditions of RH 95%. This treatment serves to give the coil added protection against corrosion that could occur as a result of moisture reacting with certain chemical agents such as those found in acid or saline atmospheres.
GOLD PLATING	Surface treatment of contacts, blades and output terminals with gold, thickness $\ge 2\mu$. This treatment ensures long-term capacity of the contact to conduct low levels of current, even in adverse ambient conditions.
FLYBACK DIODE	Component connected in parallel with the coil designed to suppress overvoltages generated by the coil when de-energized.
LOW TEMPERATURE	Minimum operating temperature -40°C, only for rolling stock version (option "L")

	Ordering sche	eme							
	Product code	Application ⁽¹⁾	Configuration A	Configuration B	Label	Type of power supply	Nominal voltage (V) ⁽²⁾	Finish ⁽³⁾	Keying position code ⁽⁴⁾
	RMB	E: Energy F: Railway Fixed Equipment R: Railway Rolling stock	1: Standard 3: Diode // 4: Gold-plating 6: Gold-plating + Diode //	2X: 8 CO contacts 3X: 7 CO contacts	F	C : Vdc A: Vac 50 Hz H: Vac 60 Hz	012 - 024 - 036 048 - 072 - 096 110 - 125 - 132 220 - 230 - 380 440	T: Tropicalized coil L: Low temperature	XX
	RMB	E	4	3X	F	С	110		
Example		RMB	E43XF-C110 = ENE	RGY series relay,	with 7	CO gold-plated	contactsand 110V	dc coil	
Exar	RMB	R	1	2X	F	С	072	Т	
		RMBR12XF-C072T = RAILWAY, rolling stock series, relay with 8 CO contacts and 72Vdc tropicalized coil							

(1) ENERGY: all applications except for railway.


RAILWAYS, FIXED EQUIPMENT: application on fixed power systems and electrical railway traction. For list of RFI compliant and type-approved products, consult dedicated catalog "RAILWAY SERIES - RFI APPROVED".

RAILWAYS, ROLLING STOCK: application on board rolling stock. Electrical characteristics according to EN60077.


(2) Other values on request. Voltages 380V and 440V available as Vac only.
 (3) Optional value.

(4) Optional value. Positive mechanical keying is applied according to the manufacturer's product model.

RMB.x3X

42 44

RMB.x2X

32 34

22 24

12

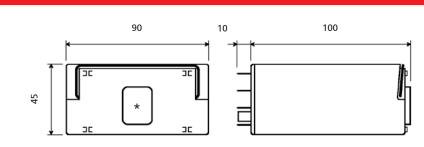
14

INSTANTANEOUS IONOSTABLE WIT -ORCIBLY GUIDED

B1(-)

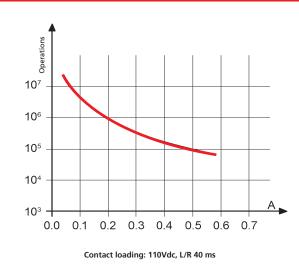
BISTABLE

AND AND AND


> ME DELAN N PICK-UF DROP-OL

TIME DELAY V FORCIBLY GUI CONTACTS

IEASUREMENT


SOCKET NUMBERING XPLANATIONS

Dimensions

(*) access to the manual operating lever

Electrical life expectancy

	U	I (A)	L/R (ms)	Operations
110	Vdc	0.5	40	150,000
110	Vdc	0.6	10	300,000
132	Vdc	0.7	40	100,000
125	Vdc	1.2	0	1,000,000
220	Vdc	0.1	40	100,000
220	Vdc	0.25	10	100,000
	U	I (A)	cosφ	Operations
110	Vac	1	1	2,000,000
110	Vac	1	0.5	1,500,000
110	Vac	5	1	1,000,000
110	Vac	5	0.5	500,000
220	Vac	0.5	1	2,000,000
220	Vac	1	0.5	600,000
220	Vac	5	1	650,000
220	Vac	5	0.5	600,000

Switching frequency: 1,200 operations/hour

Sockets and retaining clips					
Type of installation	Type of outputs	Model	Retaining clip		
	Screw	96IP20-I DIN	- DMC40		
Wall or DIN rail mounting	quick wiring	PAIR320			
	Double faston (4.8 x 0.8 mm)	ADF4	RMC48		
Flush mounting	quick wiring	PRIR320			

(1) Suitable for mounting 2 relays side by side.

Mounting tips

The preferred mounting position is on the wall, with the relay positioned horizontally in the reading direction on the nameplate. Retaining clips are used to ensure that the relay is secured correctly to the socket. No special maintenance is required.

Condensation can form inside the relay when powered up and the outside ambient temperature is cold; this is quite normal and does not affect the operation of the relay. The plastic materials of the relay do not possess hygroscopic properties.

RMB SERIES

USER SECTORS

RMBE13

PRODUCT ADVANTAGES

- Plug-in instantaneous bistable relay
- Solid and rugged construction for heavy or intensive duty
- Very long electrical life expectancy and exceptional endurance
- Pulsed or permanent power supply, a.c. or d.c.
- Self-cleaning knurled contacts
- Fitted with mechanical optical contact status indicator as standard
- Lever for manual operation (optional)
- Wide variety of configurations and customizations
- Transparent cover, fixing/pulling screws
- Label holder in cover for customer's use
- Positive mechanical keying for relay and socket

DESCRIPTION

RMB relays are multipole bistable types sharing the same basic mechanical design as those of the RGB series, and offering the same specifications and performance. Available in versions with from 7 to 20 change-over contacts, these highly reliable products provide top performance and are suitable for applications in particularly harsh and unsettled environments, such as high voltage electricity distribution stations and medium voltage substations. An automatic coil de-energization system ensures that power consumption of the relay reduces to zero once the operating cycle has been completed.

Versatility in manufacture allows the production of relays with any voltage from 12 to 250VDC/440VAC, and with a variety of operating ranges adaptable to different application requirements. The contacts used are of a type designed to give notable levels of performance both with high and strongly inductive loads, and with particularly low loads; knurled contacts ensure not only better self-cleaning characteristics, but also lower ohmic resistance thanks to multiple points of electrical connection, thereby extending the electrical life expectancy of the component. All models offer the facility of manual operation, so that tests can be performed even in the absence of electrical power. To ensure that the relay remains firmly anchored to the sockets, these are equipped with fixing screws, so that there is no need for the use of retaining clips. A product of proven reliability, as demonstrated by its use for over 40 years in electrical energy transmission and distribution systems, and fixed equipment used in the railway sector.

Like all our relays, models in the RMB series are assembled as part of a controlled manufacturing process in which every step of production is verified by the next step in succession. In effect, each relay is calibrated and tested individually, by hand, in such a way as to guarantee top reliability.

ARNOUX

Models	Number of contacts	Power input to coils	
RMB.x3	7	Common negative	
RMBZ12	8	Coils galvanically separated	
RMB.x5	11	Common negative	_
RMBZ13	12	Coils galvanically separated	
RMB.x7	19	Common negative	
RMBZ14	20	Coils galvanically separated	_

 \wedge

FOR CONFIGURATION OF PRODUCT CODE, SEE "ORDERING SCHEME" TABLE

Coil specification		RMB.x3	RMB.x5-x7	RMBZ12	RMBZ13-14		
	Nominal voltages Un (1)		DC / AC: 12-24-48-110-12	5-132-144-230-380 ⁽²⁾ -440 ⁽	2)		
	Consumption at Un (DC/AC) ⁽³⁾	15 W / 15 VA	30 W / 30 VA	19 W / 19 VA	36 W / 36 VA		
	Operating range	DC: 80120% Un - AC: 85110% Un					
	Type of duty		Continuous				

Minimum control pulse: 50ms.

(1) Other values on request.

(2) Maximum value, a.c. = 380V 50Hz - 440V 60Hz.

(3) Latch and unlatch. Power consumption is zero on completion of the operating cycle, as the coil de-energizes automatically.

ontact specifi		RMB.x3	2 CO farm C	11 CO farm C	12 CO farm C	RMB.x7	RMBZ14	1
	Nombre et type	7 CO, form C	8 CO, form C	11 CO, form C	12 CO, form C	19 CO, form C	20 CO, form C	-
Current	Nominal ⁽¹⁾			10	A			
	Maximum peak (2)			20A for 1mir	n - 40A for 1s			
	Maximum pulse ⁽²⁾			150A fo	or 10ms			
Exemple de d	durée de vie électrique ⁽³⁾		0.5 A - 110 Vdc	- L/R 40ms - 10⁵ o	perations - 1,200) operations/hou	r	
Minimum load	d Standard contacts		200 mW (10 V, 10 mA)					
	Gold-plated contacts		50 mW (5 V, 5 mA)					
Мах	ximum breaking voltage			350 VDC	/ 440 VAC			-
	Contact material		AgCdO					
		RMB.x3	RMBZ12	RMB.x5	RMBZ13	RMB.x7	RMBZ14	
Operating time	e at Un (ms) (4)	DC - AC	DC - AC	DC - AC	DC - AC	DC - AC	DC - AC	-
Pick-u	up (NC contact opening)	$\leq 8 - \leq 20$	\leq 9 - \leq 20	≤ 9 - ≤ 20	≤ 10 - ≤ 20	≤ 8 - ≤ 20	≤ 8 - ≤ 20	
Pick-	-up (NO contact closing)	\leq 30 - \leq 35	$\leq 26 - \leq 37$	$\leq 32 - \leq 37$	\leq 33 - \leq 37	≤ 25 - ≤ 35	$\leq 25 - \leq 36$	
Drop-out (NO contact opening)		\leq 9 - \leq 25	≤ 8 - ≤ 25	≤ 8 - ≤ 20	$\leq 9 - \leq 22$	≤ 8 - ≤ 25	≤ 9 - ≤ 27	
Drop-	out (NC contact closing)	≤ 56 - ≤ 65	$\leq 40 - \leq 60$	$\leq 50 - \leq 60$	\leq 36 - \leq 57	≤ 43 - ≤ 53	≤ 43 - ≤ 58	

(3) For other examples, see electrical life expectancy curves.

(4) Unless specified otherwise, operating times are understood as comprising stabilization of the contact (inclusive of bounces)

_			FRONT
4	Insulation		ECT
	Insulation resistance (at 500Vdc)		ONN
	between electrically independent circuits and between these circuits and ground	> 10,000 MΩ	Ű
	between open contact parts	> 10,000 MΩ	
	Withstand voltage at industrial frequency		7
	between electrically independent circuits and between these circuits and ground	2 kV (1 min) - 2.2 kV (1 s)	BACK CONNECTION
	between open contact parts	2 kV (1 min) - 2.2 kV (1 s)	NEC
	between adjacent contacts	2 kV (1 min) - 2.2 kV (1 s)	ONP
	Impulse withstand voltage (1.2/50µs - 0.5J)		0
	between electrically independent circuits and between these circuits and ground	5 kV	
	between open contact parts	5 kV	
			5

chanical specifications		RMB.x3-RMBZ12	RMB.x5-RMBZ13	RMB.x7-RMBZ14	
	Mechanical life expectancy		20x10 ^e operations		
ximum switching rate	Mechanical	900 operations/hour			
	Degree of protection	IP40			
Dimensions (m		132x58x84 ⁽¹⁾	188x58x84 ⁽¹⁾	300x58x84 ⁽¹⁾	
	Weight (g)	450	760	1140	

(1) Excluding output terminals

CHAUVIN ARNOUX ENERGY

. QI	Environmental specifications	
	Operating temperature	-25 to 55°C
	Storage and shipping temperature	-25 to 70°C
	Relative humidity	Standard: 75% RH - Tropicalized: 95% RH
	Fire behavior	V0

Q	Standards and reference values					
	EN 61810-1, EN 61810-2, EN 61810-7	Electromechanical elementary relays				
	EN 60695-2-10	Fire behavior				
	EN 61000	Electromagnetic compatibility				
	EN 60529	Degree of protection provided by enclosures				

Sauf indication contraire, les produits sont conçus et fabriqués conformément aux prescriptions des normes européennes et internationales citées ci-dessus. Conformément à la norme EN 61810-1, toutes les données techniques s'appliquent pour une température ambiante de 23 °C, une pression atmosphérique de 96 kPa et une humidité de 50 %. La tolérance pour la résistance de bobine et la puissance nominale est de \pm 7 %.

🧔 Co	onfigurations - Options	
TR	ROPICALIZATION	Surface treatment of the coil with protective coating for use with RH 95%.
GC	OLD PLATING	Surface treatment of contacts, blades and output terminals with gold-cobalt, thickness $\ge 2\mu$. This treatment ensures long-term capacity of the contact to conduct lower currents.
FL	YBACK DIODE	Component connected in parallel with the coil (type 1N4007) designed to suppress overvoltages generated by the coil when de-energized.
	EVER FOR MANUAL PERATION	Allows manual operation of the relay, with the cover closed, using a screwdriver.

	Ordering s	cheme							
	Product code	Application ⁽¹⁾	Configuration A	Configuration B	Label	Type of power supply	Nominal voltage (V) ⁽²⁾	Finish ⁽³⁾	Keying position code ⁽⁴⁾
	RMB	E: Energy F: Railway Fixed Equipment	1: Standard 3: Diode // 4: Gold plating 6: Gold plating + Diode// Z12 - 8 CO contacts Z13 - 12 CO contacts Z14 - 20 CO contacts	5 (5)	F	C: Vdc A: Vac 50 Hz H: Vac 60 Hz	012 - 024 - 048 110 - 125 - 132 144 - 220 - 230 380 - 440	T: Tropicalized coil M: Manual operation ⁽⁶⁾	XXX
	RMB	E	4	3	F	С	110		SAH
مامد		RMBE43F-C1	10-SAH = ENERGY	series relay, with	7 CO go	ld-plated conta	cts, 110Vdc coil and	keying position	SAH
- 2	-			T					

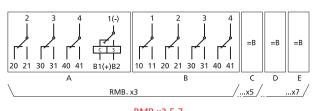
ple		RMBE43F-C1	10-SAH = ENERGY	series relay, with 7	CO go	d-plated conta	cts, 110Vdc coil and l	keying position S	SAH
(am	RMB	E	1	4	F	с	110		
ш		R	MBF15F-C110 = RA	ILWAY series relay	, fixed e	quipment, wit	h 11 CO contacts, 110	VDC coil	

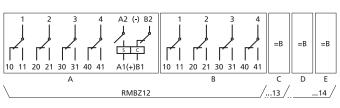
(1) ENERGY: all applications except for railway.

RAILWAYS, FIXED EQUIPMENT: application on fixed power systems and electrical railway traction. For list of RFI approved and conforming products, consult dedicated catalog "RAILWAY SERIES - RFI APPROVED".

Also available is the STATIONS series, with ENEL approved material meeting LV15/LV16 specifications. For list of ENEL compliant and type-approved products, consult dedicated catalog "STATIONS SERIES – LV15-LV16-LV20".

(2) Other values on request. Voltages 380V and 440V available as Vac only.

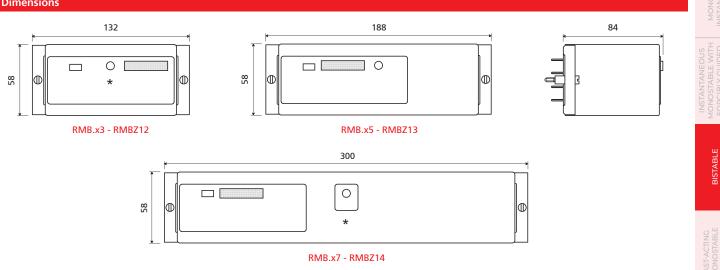

(3) Optional value. Multiple selection possible (e.g. TM).

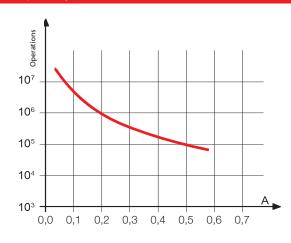

(4) Optional value. Positive mechanical keying is applied according to the manufacturer's model.

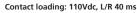
(5) Suitable for "E" and "F" applications. Gold-plated (2µ) contacts and terminals available on request.

(6) With manual operation, no optical indicator.

Wiring diagram




RMBZ12-13-14


Dimensions

(*) Models with manual operating lever (optional) are provided with a hole at the front giving access to the lever. The position of the data plate holder and the mechanical optical indicator can vary depending on the version.

Electrical life expectancy

U	I (A)	L/R (ms)	Operations
110 Vdc	0.5	40	100,000
110 Vdc	0.6	10	300,000
120 Vdc	0.7	40	50,000
125 Vdc	1.2	0	1,000,000
220 Vdc	0.1	40	100,000
220 Vdc	0.25	10	100,000
U	I (A)	cosφ	Operations
110 Vac	1	1	2,000,000
110 Vac	1	0.5	1,500,000
110 Vac	5	1	1,000,000
110 Vac	5	0.5	500,000
220 Vac	0.5	1	2,000,000
220 Vac	1	0.5	600,000
220 Vac	5	1	650,000
220 Vac	5	0.5	600,000

Switching frequency: 1,200 operations/hour

Sockets and retaining clips		RMB.x3-Z12	RMB.x5-Z13	RMB.x7-Z14
Type of installation	Type of outputs			
Wall or DIN rail mounting	Screw	PAVM321	PAVM481	PAVM801
Flush mounting	Double faston (4.8 x 0.8 mm)	PRDM321	PRDM481	PRDM801
	Screw	PRVM321	PRVM481	PRVM801

Mounting tips

The preferred mounting position is on the wall, with the relay positioned horizontally in the reading direction on the nameplate. Retaining clips are not required, as a secure connection is guaranteed by the fixing screws. These same screws also serve to facilitate installation and removal of the relay. To ensure correct use, the screws must be tightened / loosened in alternating sequence, by degrees. No special maintenance is required.

Condensation can form inside the relay when powered up and the outside ambient temperature is cold; this is guite normal and does not affect the operation of the relay. The plastic materials of the relay do not possess hygroscopic properties.

FRONT

OKBA SERIES

USER SECTORS

OKBA

PRODUCT ADVANTAGES.

- Plug-in instantaneous bistable relay
- Solid and rugged construction
- Long life expectancy
- Automatic de-energization following operation, energy saving
- Magnetic holding action
- Patent operating mechanism, designed to ensure high contact pressure
- Magnetic arc blow-out standard
- Independent and self-cleaning contacts
- Pulsed or permanent power supply, a.c. or d.c.
- Excellent shock and vibration resistance
- Wide range of sockets
- Retaining clip for secure locking of relay on socket
- Transparent cover, pull-out handle
- Positive mechanical keying for relay and socket

DESCRIPTION

OKBA bistable relays are electromechanical devices having two stable states controlled by two distinct power inputs. There are many possible applications: these relays are used mainly because they are able to maintain the status assumed after the last switching operation, even in event of a power outage occurring - in short, they have a guaranteed "memory" capability. Given their superior **reliability** and **durability**, these components are capable of filling roles that call for a high level of responsibility; in effect, they are used in environments where continuous duty is an essential requirement (e.g. electrical transformer stations and continuous cycle manufacturing processes).

OKBA relay are equipped with a mechanism (electronic or mechanical, depending on the model) that **cuts off the power supply** to the coil leads after the switching operation; this means that power consumption can be **reduced to zero, while maintaining the required operating position**. The OKBA has a common negative pole and is configured with the two negative poles separate from one another, for greater flexibility of connection. In this model the core of a monostable relay is replaced by a special element made of magnetic material, which magnetizes when the relay is operated. In the event of a power outage, the magnet is able to hold the contacts in the operating position with a force on the **armature of 10N**. The magnet is demagnetized by a de-energize winding, which generates a magnetic field opposite to that of the energize winding, and allows the relay contacts to return to their initial position. The release winding forms part of the same coil that incorporates the latch winding. Available in versions with 4 or 8 change-over contacts.

Like all our relays, OKBA model are assembled, calibrated and tested, individually and manually, as part of a sequential manufacturing process in which each step of production is tested automatically during the course of the subsequent step.

6 CHAUVIN ARNOUX

Models		Number of contacts	Rolling stock application	.SONO
	ОКВА	4	•	M
	OKBA8	8		

⚠	FOR CONFIGURATIO	ON OF PRODUCT CODE, SEE "ORDERING SCHEME" TABLE	INSTAN	FORCIBI
ф	Coil specifications			~
	Nominal voltages Un (1)	DC: 24, 36, 48, 72, 110, 125, 132, 144, 220 AC: 24, 48, 110, 127, 220, 230		BLE
	Max. consumption at Un $^{\scriptscriptstyle (2)}$ Version for rolling stock at Un $^{\scriptscriptstyle (2)}$	7W / VA (latch) 3.5W / VA (unlatch) ⁽³⁾ 12,5W (latch) 5,5W (unlatch)		BISTAE
	Operating range	80115% Un DC : 70125% Un	9	BLE BLE
	Version for rolling stock	Continuous	-ACTIN	

Minimum control pulse 100 ms.

(1) Other values on request.

(2) At the moment of the relay being switched. De-energization occurs after 100 ms approx. Power consumption with relay energized: OKBA = 0.6 W / VA.

(3) For versions with 8 contacts, double the value.

Number and type	4 CO, form C ⁽¹⁾	-
Current Nominal ⁽²	10A	_
Maximum peak (1 min) ⁽³	20 A	
Maximum pulse (10 ms) ⁽³⁾	150 A	
Exemple de durée de vie électrique ⁽⁴	0.5 A - 110 Vdc - L/R = 40 ms: 10^{5} operations, 900 operations / hour	\equiv
Minimum load Standard contacts	500 mW (20 V, 20 mA)	
Gold-plated contacts P4GEO ⁽⁵	100 mW (10 V, 5 mA)	
Maximum breaking voltage	350 Vdc / 440 Vac	—
Contact materia	AgCu	
Operating time at Un (ms) ⁽⁶⁾	DC - AC	
Pick-up (NO contact closing)	≤ 30	
Drop-out (NC contact closing)	≤ 4 0	

(3) The max. peak and pulse currents are those currents that can be handled, for a specified time, by the contact. They do not refer to steady or interrupted currents.

(4) For other values, see electrical life expectancy curves.

(5) Specifications of gold-plated contacts on new relay

a) Plating material: P4 GEO: gold-nickel alloy (>6µ)

b) When the gold-plated contact is subject to heavy loads, it will be degraded on the surface. In such case, the characteristics of the standard contact should be taken into consideration. This does not impair relay operation.

(6) Unless specified otherwise, the operating time signifies until stabilization of the contact (including bounces).

Insulation resistance (at 500Vdc) between electrically independent circuits and between these circuits and ground between open contact parts	> 1,000 ΜΩ > 1.000 ΜΩ	
Withstand voltage at industrial frequency between electrically independent circuits and between these circuits and ground	2 kV (1 min) - 2.2 kV (1 s)	
between open contact parts between adjacent contacts Impulse withstand voltage (1.2/50µs - 0.5J)	2 kV (1 min) - 2.2 kV (1 s) 2 kV (1 min) - 2.2 kV (1 s)	
between electrically independent circuits and between these circuits and ground between open contact parts	5 kV 5 kV	

97

CHAUVIN ARNOUX

ENERG

FRONT CONNECTION

Mechanical specifications			OK	ВА							
Mecha	anical life expectancy	,	20x10 ⁶ operations								
Maximum switching rate	Mechanical		900 operations/hour								
Degree of protection (with relay mounted)	i) IP20									
		4 CO		8 CO							
	Dimensions (mm)	45x45x109 ⁽¹) 9	2x45x109 ⁽¹⁾							
	Weight (g)	~ 300		~ 620							
(1) Excluding output terminals											
🔅 Environmental specifications											
Operating temperature	Standard	-10 to +55°C									
Version for ra	ilways, rolling stock	-25 to +70°C									
Storage and shipping temperature		-25 to +70°C									
Relative humidity		Standard: 75% RH - Tro	picalized: 95% RH								
Resistance to vibrations		1g - 10 to 50 Hz									
Resistance to shock		3g									
Fire behavior		to EN 60695-2-10									

ā	Standards and reference values	
	EN 61810-1, EN 61810-2, IEC 61810-7	Electromechanical elementary relays
	EN 60695-2-10	Fire behavior
	EN 50082-2	Electromagnetic compatibility
	EN 60529	Degree of protection provided by enclosures

Unless otherwise specified, the products are designed and manufactured according to the requirements of the above-mentioned European and International standards. In accordance with EN 61810-1, all items of technical data are referred to ambient temperature 23 °C, atmospheric pressure 96kPa and 50% humidity. Tolerance for coil resistance, nominal electrical input and nominal power is ±7%.

Ŕ	Railways, rolling stock - Standa	ards
	EN 60077	Electric environment for an Uine stands. Commenter and division and successfunder
	EN 60077	Electric equipment for rolling stock - General service conditions and general rules
	EN 50155	Electronic equipment used on rolling stock
	EN 61373	Shock and vibration tests, Cat 1, Class B
	EN 45545-2	Fire behavior, Cat E10, Requirement R26, V0
	ASTM E162, E662	Fire behavior

Configurations - Options	
P2	Tropicalization of the coil with epoxy resin for use with 95% RH (@ T 50 °C). This treatment also protects the coi against corrosion which could occur by combination of the humidity with certain chemical agents, such as those found in acid atmospheres (typical of geothermal power stations) or saline atmospheres.
P4GEO	Gold plating of contacts with gold-nickel alloy, thickness $\ge 6\mu$. This treatment ensures long-term capacity of the contact to conduct lower currents in harsh ambient conditions such as acid atmospheres (typical of geothermal power stations) or saline atmospheres.
P5GEO	P4GEO gold-plating of contacts + P2 coil tropicalization.
P6GEO	P4GEO type gold-plating, but applied to contacts, contact terminals and output terminals + P2 coil tropicalization.
FLYBACK DIODE	Polarized component connected in parallel with the coil (type 1N4007 or BYW56 for rolling stock version) designed to suppress overvoltages generated by the coil when de-energized.
IP40	IP40 protection with "6" handle or closure with screws.
8 contacts	Version with 8 change-over contacts, obtained using 2 x 4 CO relays, coils connected in series.
LOW TEMPERATURE (OKBA, 4 CO only)	Minimum operating temperature -40 °C, only for Rolling stock version (option "L").

=	OKBA Ordering	scheme								MONC
	Product code	Number of contacts	Application ⁽¹⁾	Configuration A	Configuration B	Label	Type of power supply	Nominal voltage (V) ⁽²⁾	Keying position ⑶	EOUS E WITH M
		4: 4 CO ⁽⁴⁾	E: Energy / Railway Fixed Equipment	1: Standard	0 : Standard 2 : P2	F	C: Vdc	024 - 036 - 048 072 - 096 - 110	ххх	MONOSTABLE
	оква	8 : 8 CO	R: Railway Rolling Stock	2: Diode //	4 : P4 GEO 5 : P5 GEO 6 : P6 GEO	F	A: Vac 50 Hz	125 - 127 - 132 144 - 220 - 230	L: Low temperature	ISTABLE

ble	ОКВА		E	1	0	F	С	144				
aldr		OKBAE10F-C144 - OKBA relay, ENERGY series, nominal voltage 144 Vdc								S R		
Exan	OKBA 8 E 1 2 F C 024											
ш	OKBA	8E12F-C024 - OF	(BA relay, ENERGY	series, nominal vo	ltage 24 Vdc, equ	ipped w	ith 8 contacts and P	2 finish (tropicaliza	ation of coil)	FAST		

(1) E = ENERGY: all applications, except for railways rolling stock.

Suitable on energy production, transport and distribution plants, railways fixed equipment, petrolchemical and heavy industry.

R = RAILWAYS, ROLLING STOCK: Application on board rolling stock (rail-tram-trolley vehicles). Electrical characteristics according to EN60077. Availables also the product series:

RAILWAYS, FIXED EQUIPMENT: Approved and conforming relays and products to RFI (FS Group) specification no. RFI DPRIM STF IFS TE 143 A For the list of RFI approved and conforming products, consult dedicated catalog "RAILWAY SERIES – RFI APPROVED".

STATIONS: ENEL approved material meeting LV15/LV16 specifications.

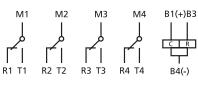
For the list of ENEL approved and conforming products, consult the dedicated catalogu"STATIONS SERIES - LV15-LV16-LV20".

45

Φ

0000

(2) Other values on request.


E

(3) Optional value. The positive mechanical keying is applied according to the manufacturer's model.

(4) For the standard version with 4 contacts, the field must be left empty.

Wiring diagram

Dimensions

OKBA

OKBA 8 contacts

R1 T1

Ð

M1

M2

R2 T2

M3

R3 T3

M4

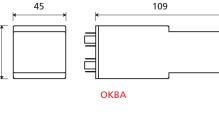
R4 T4

B1(+)B3

B4A(-)

FRONT CONNECTION

BACK


OKBA 8 contacts

a

0 (@

0000

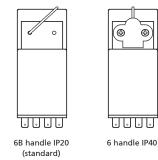
œ

M1

R1 T1

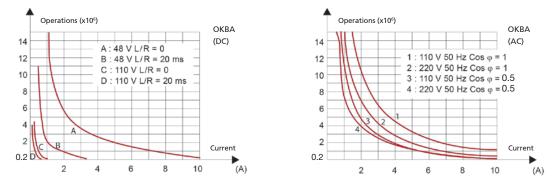
M2

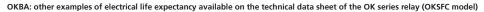
R2 T2


В

M3

R3 T3


M4


R4 T4

Sockets and retaining clips	оква,	4 CO ⁽¹⁾
Number of terminals (standard dimensions 5x0.8mm)	16	Retaining clip ⁽²⁾
For wall or rail mounting		
Spring clamp, wall or DIN H35 rail mounting	PAIR160	RL48
Screw, wall or DIN H35 rail mounting	48BIP20-I DIN	RL48
Screw, wall mounting	48BL	RL48
Double faston, wall mounting	48L	RL48
For flush mounting		
Double faston (4.8 x 0.8 mm)	ADF2	RL48
Screw	43IL ⁽³⁾	RL43
For mounting on PCB		
	65	RL43

(1) For version with 8 contacts, assume 2 sockets respectively for each relay. In this instance, the mounting distance between centers of the sockets must be 45 mm. The ADF socket cannot be used.

(2) Assume 2 clips for relays with 8 contacts.

(3) Insert the clip before fastening the socket to the panel.

For more details, see specifications of mounting accessories.

Mounting tips

The preferred mounting position is on the wall, with the relay positioned horizontally in the reading direction on the nameplate. These bistable relays are equipped with automatic de-energization. When mounting, accordingly, there is no need for them to be spaced apart as they do not draw power continuously and therefore will not overheat.

For safe and secure operation, it is advisable to use retaining clips.

No special maintenance is required.

Condensation can form inside the relay when powered up and the outside ambient temperature is cold; this is quite normal and does not affect the operation of the relay. The plastic materials of the relay do not possess hygroscopic properties.


Notes

																				r							,,					, ,				ABL LY GI
		Ĺ	Ĺ		Ľ	Ĺ		Ĺ	Ĺ	Į	Į				Ĩ					\square			\square		<u>آ</u>	\square	\square		\square			\downarrow				INSTANTANE MONOSTABLE FORCIBLY GU
	\vdash	<u> </u>	<u> </u>	ļ'	ļ'	<u> </u>	<u> </u>	<u> </u>	\square	↓	<u>↓</u>	\square	\vdash	⊢	\square		\vdash	\vdash	\vdash	\vdash	$ \rightarrow$	\square	\vdash		-	\mapsto	<u> </u>	\square	\vdash	$ \rightarrow$		\mapsto				Z Õ Ö
	\vdash	<u> </u>	<u> </u>	<u> </u> _'	<u> </u> '		<u> </u> _'	+-	${\longleftarrow}$	<u> </u>	\vdash	\square	\vdash		-	\square	\vdash	\vdash	\vdash	\vdash	-	$ \square$	\vdash		\mapsto	\vdash	$ \rightarrow$		\square	\dashv		\vdash	\rightarrow	<u> </u>		
$\left - \right $	\vdash	<u> </u> _'	<u> </u> _'	<u> </u> _'	<u> </u> _'	-	\vdash	\vdash	${\longleftarrow}$	\vdash	\vdash	$\left - \right $	\square		$\left - \right $		\vdash	\vdash		\vdash	-	\square	\vdash		\vdash	\square	\rightarrow	\rightarrow	\square	\dashv		\vdash	\rightarrow	+		BISTABLE
	\vdash	\vdash	<u> </u> _'	<u> </u> _'	\vdash	\vdash	\vdash	\vdash	$\left\{ - \right\}$	\vdash	\vdash	$\left - \right $	$ \square$		$\left - \right $		$ \rightarrow$	\vdash		\vdash	\dashv	$ \rightarrow$	\square	$ \longrightarrow$	\vdash	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\dashv	 	\square	\rightarrow	+	_	BIST
	\square	\vdash	+'	+'	\vdash	\vdash	$\left - \right $	+	$\left\{ - \right\}$	$\left - \right $	\vdash	$\left - \right $	\square		$\left - \right $	\rightarrow	$ \square$			\square	\dashv	\rightarrow	\square	$ \rightarrow$	\vdash	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\dashv	\rightarrow	\square	\rightarrow	-	_	
	[]	\vdash	\vdash	+'	\square	\square	$\left - \right $	\square	$\left\{ - \right\}$	$\left \right ^{+}$	$\left \right ^{+}$	$\left - \right $	\square		$\left - \right $		$ \square$	[]	$ \longrightarrow $	\square	+	\rightarrow	\square		\vdash	\rightarrow	\rightarrow	\dashv	1	\dashv	\rightarrow	\square	\rightarrow	_		111 5
	[]	\square	\square	\vdash	\square	\square	\vdash	\square	$\left \right $	$[] \rightarrow$	$\left \right ^{+}$	$\left - \right $			$\left \right \right $		$ \rightarrow$	\square	\rightarrow	\square	+		\dashv		\square	\rightarrow	+	\rightarrow	1	+	, —†	\square	+	+		FAST-ACTING (MONOSTABLE AND BISTABLE)
	\square	\square	\square							$\left \right ^{+}$		$\left \right $	\square		$\left - \right $	\rightarrow	1	\square^{\dagger}		\square	\dashv		\square		\square	\rightarrow	1	$\neg \uparrow$	1	\dashv	\rightarrow	\square	+	+		AST-AC ONOS
													\square	+		\neg			1	\square	\uparrow	\neg		1	\square	\neg		$ \uparrow$	1	\neg	1					AN (M
	\square												\square			\neg		\square			\neg		\square	1	\square	\square		\neg	1	\neg	1	\square				
																																				TIME DELAY (ON PICK-UP OR DROP-OUT)
		\Box'	\Box	[]'	\Box'	\Box'																														LE DEL
		Ĺ	Ĺ	Ĺ_'	Ĺ	Ĺ	['	Ĺ_'	Ĺ)		Ĺ			Ē																					MIT (ON AC
		∟'	<u> </u>	<u> </u>	ļ'	⊥_'		⊥_'		⊥_	⊥_			,					\vdash	\square					\square				\square		 			<u> </u>		
		<u> </u>	<u> </u>	<u> </u> '	<u> </u>	<u> </u>		'		↓	⊥_									\square					\square				$ \square$		 					OED
		<u> </u>	<u> </u> '	<u> </u> '	<u> </u>	<u> </u>	<u> </u> '	⊥_'		⊥_	⊥_		\square	ا ــــــــــــــــــــــــــــــــــــ					\vdash	\square		\square	\square	⊢_	\square		$ \square$		$ \square$		ا	\square				TIME DELAY WITH FORCIBLY GUIDED CONTACTS
	اا	<u> </u>	<u> </u> '	↓ _'	<u> </u> '	<u> </u>	<u> </u> '	<u> </u> '		⊥	⊥_		\square	ا ب]	<u></u>		⊢_	\square		\square	\square		\square	\square	,		$ \longrightarrow $,	\square				IE DEL CON
	⊢ ∣	<u> </u> _'	<u> </u>	<u> </u> '	<u> </u>	<u> </u>	<u> </u> '	<u> </u>	\square	↓	⊥_	\square	\square	 	\bigsqcup		⊢_		⊢_	\square		\square	\square	⊢_	\square	$ \longrightarrow $	<u> </u>		$ \longrightarrow $			$ \longrightarrow $	\square	\square		AIT NO 10
	\vdash	<u> </u>	<u> </u>	<u> </u> '	<u> </u> '	<u> </u>	<u> </u> _'	<u> </u>	\square	ļ!	ļ	\square	\vdash	⊢_	-		\square	\square	<u>⊢</u>	\vdash		\vdash	\vdash		\mapsto	⊢	<u> </u>		<u> </u>	$ \rightarrow$		\vdash				
	⊢	<u> </u>	<u> </u>	<u> </u> _'	<u> </u>	<u> </u>	<u> '</u>	<u> </u>	\square	ļ	↓	-	\vdash	⊢_	-		\vdash	\square	⊢_	\vdash	\dashv	\vdash	\vdash	\vdash	\vdash	\mapsto	<u> </u>		<u> </u>	\dashv		\vdash	\rightarrow	\rightarrow		MEASUREMENT
	<u> </u>	<u> </u>	<u> </u>	<u> </u> '	ļ!	<u> </u>	<u> </u>	<u> </u>	\square	ļ	↓	-	\vdash	⊢	-		_	\square		\vdash	_	\vdash	\vdash		$ \longrightarrow $	\mapsto		\square	\vdash	\rightarrow		\vdash	\rightarrow			SURE
	\vdash	<u> </u>	<u> </u>	<u> '</u>	<u> </u>	<u> </u>	<u> </u> _'	<u> </u>	\square		<u>↓</u>	\square	\vdash	⊢_	-		\vdash	\vdash	⊢_	\square	$ \rightarrow$	\square	\vdash	<u> </u>	\square	\mapsto	$ \rightarrow $		\vdash	$ \rightarrow $		\vdash		_		MEA
	\vdash	<u> </u>	<u> </u>	<u> </u> _'	ļ'	<u> </u>	<u> '</u>	–′	\square	⊢_	<u>⊢</u>	\square	\vdash	⊢_	-		\vdash	\vdash	⊢_	\vdash	$ \rightarrow$	\vdash	\mapsto		\mapsto	\mapsto	$ \longrightarrow $		\vdash	\rightarrow		\mapsto			_	
	\vdash	<u> </u>	<u> </u>	<u> </u> _'	<u> </u>	<u> </u>	<u> </u> _'	<u> </u> _'	\square	\vdash	\vdash	\vdash	\vdash	\vdash	-	\square	\vdash	\vdash	\vdash	\vdash	\rightarrow	\vdash	\vdash		\mapsto	\vdash	$ \rightarrow$		<u> </u>	-+		\vdash	_	<u> </u>		DISNO
	\vdash	<u> </u>	<u> </u> _'	<u> </u> '	<u> '</u>	<u> </u>	<u> </u> '	<u> </u> '	$\qquad \qquad $	\vdash	\vdash	$\left - \right $	\vdash		$\left - \right $	\square	\vdash	\vdash	\vdash	\vdash		\vdash	\vdash		\mapsto	\vdash	\rightarrow			\dashv		\vdash	\rightarrow	-		CKET BERIN
	\vdash	<u> </u>	<u> </u> '	<u> </u> '	<u> </u> '	<u> </u>	<u> </u> '	<u> </u>	${\longmapsto}$	\vdash	\vdash	–	\vdash		$\left - \right $	\square	\vdash	\vdash	\vdash	\vdash		\vdash	\vdash		\mapsto	\vdash	\rightarrow			\rightarrow		\vdash		+		SOCKET NUMBERING EXPLANATIONS
	\vdash		<u> '</u>	<u> </u> '	<u> </u>		–	<u> </u>	${ \qquad }$	\vdash	\vdash	$\left - \right $	\vdash		$\left - \right $	$ \rightarrow$	\vdash	\vdash	\vdash	\vdash	\dashv	$ \rightarrow$	\vdash		\mapsto	$ \rightarrow$	\rightarrow	\rightarrow	\square	\rightarrow		\vdash	-	+		Ē.
	\vdash	\vdash	<u> </u>	<u> </u> '			\vdash	<u> </u>	${ \qquad }$	${ \rule{0.5ex}{1.5ex}}$	\vdash	$\left \right $	\vdash		$\left \rightarrow \right $	<u> </u>	\vdash	\vdash	\vdash	\vdash	\rightarrow	$ \rightarrow$	\vdash		\vdash	$ \rightarrow$	\rightarrow	\rightarrow	\square	\dashv	 	\vdash	+	+		
$\left - \right $	\vdash	\vdash		<u> </u> '			–	<u> </u>	${\longmapsto}$	$\vdash \!$	${ \longmapsto}$	$\left - \right $	\vdash		$\left - \right $		⊢	\vdash	$ \square$	\vdash	\dashv	$ \rightarrow$	$ \vdash $	$ \longrightarrow$	\vdash	$ \rightarrow$		\rightarrow	\square	\dashv		\vdash	-	+	\neg	FRONT CONNECTION
$\left - \right $	\vdash	\vdash		<u> </u> '		\vdash		<u> </u>	+	$\vdash \dashv$	\vdash		<u> </u>		$\left \rightarrow \right $		├ ┤	├ ┤	$ \longrightarrow$	+	\rightarrow	$ \rightarrow$	\square	$ \square$	\vdash	\rightarrow	\rightarrow	\rightarrow	\square	\dashv		\square	-	+	\neg	PRON NNEC
$\left - \right $	\mapsto	\vdash		+'		\vdash	+	\vdash	$ \longmapsto $	$\vdash \rightarrow$	${ \longmapsto}$	$\left - \right $	\square		\mapsto	\dashv	\vdash	\vdash		\vdash	\dashv	$ \rightarrow$	\square	$ \longrightarrow$	\vdash	\rightarrow	\rightarrow	\rightarrow	\square	\dashv	 	\square	\rightarrow	+		0
$\left - \right $	\vdash	\vdash		<u> </u> '		\vdash	\vdash	\vdash	$ \qquad \qquad$	$\vdash \dashv$	\vdash	$\left - \right $	$ \rightarrow$		$\left - \right $		\vdash	├	$ \square$	\vdash	\rightarrow	$ \rightarrow$	\square	\square	\vdash	$ \rightarrow$	\rightarrow	\rightarrow	\vdash	\dashv		\square	+	-	\neg	
$\left \right $	$\left \right $	\vdash	\vdash	\vdash	\vdash	\vdash	\vdash	\vdash	$\left\{ - \right\}$	$\vdash \rightarrow$	$ \!\!-\!\!\!-$	$\left - \right $	\square	\square	$\left - \right $		$ \vdash $	$\left \right $	$ \square$	\vdash	\dashv	$ \rightarrow$	\square		\vdash	\rightarrow		\rightarrow	\leftarrow	\dashv		\square	+	+		NO
$\left \right $	\mapsto	\vdash	\vdash	\vdash	\vdash	\square	\vdash	\vdash	$ \longmapsto $	$\vdash \rightarrow$	-	$\left - \right $	\square		$\left - \right $		$ \rightarrow$	$ \rightarrow$	$ \longrightarrow $	\vdash	\dashv	$ \rightarrow$	\square	$ \rightarrow$	\vdash	\rightarrow	\rightarrow	\rightarrow	\rightarrow	\dashv		\square		+	\neg	ACK
	$ \rightarrow$	\vdash	\vdash	\vdash	\vdash	\vdash	\vdash	\vdash	+	$ \longrightarrow$	$ \longrightarrow$	$\left - \right $	$ \longrightarrow $	\square	$\left - \right $			$ \rightarrow$	$ \longrightarrow $	\vdash	\dashv	$ \rightarrow$	\square	$ \rightarrow$	\vdash	\rightarrow	-	\rightarrow	\vdash	\dashv		\square		+	\neg	BACK CONNECTION
$\left \right $	$ \rightarrow$	\vdash	\vdash	\vdash	\vdash	\vdash	+	\vdash	+	$\vdash^{\!$	$ \longrightarrow$	\vdash	\square		$\left - \right $	-+		— †	 +		+	1	\square		\vdash	\rightarrow	+	\rightarrow	1	+		\square	\rightarrow	+		
$\left \right $	$ \rightarrow$	\vdash	\vdash	+	+	\vdash	+	\square	$\left\{ - \right\}$	$ \longrightarrow$	$ \longrightarrow$	$\left \right $	\square	[]	$\left \right $	-+	$ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$ \rightarrow$	[-]	\square	\dashv	\rightarrow	\square		\vdash	\rightarrow	1	\rightarrow	1	\dashv		\square	+	+	\neg	
	[]	\vdash	\vdash	\vdash	$\left \right $	\square	+	\square	$\left \right \right $	$[] \rightarrow$	$ \rightarrow$	$\left - \right $	\square	$ \longrightarrow $	$\left - \right $, —†	$ \ $	\square		\square	\dashv	1	\square		\vdash	\rightarrow	+	\rightarrow	1	\dashv		\square		+	\neg	DUNT
\vdash	$ \rightarrow$	\vdash	\vdash	+	+	\vdash	\vdash	\square	++	$ \longrightarrow$	$ \longrightarrow$	$\left - \right $	\square	$ \square$	$\left - \right $	-+	[-]	$ \longrightarrow $	$ \rightarrow$	\square	\dashv	1	\square		\vdash	\rightarrow	1	\rightarrow	1	\dashv		\square	+	+		PCB MOUNT
	 +	\vdash	\vdash	\vdash	$\left - \right $	\vdash	+	[]	+	$[] \rightarrow$	$\left \right ^{+}$	$\left - \right $	<u> </u>		$\left - \right $, —†	 			\square	\dashv	1	\square		\square	\rightarrow	1	\dashv	1	\dashv		\square	-	+	\neg	PC
\vdash	[]		\square	$\left - \right $	+	+	+	\square	++	$\left \right. \right. \right. \right. \right. \left. \right$	-	$\left - \right $	\square		$\left - \right $	+	$ \ $		$ \rightarrow$	\square	\dashv	1	\square	-+		\rightarrow	1	\rightarrow	1	+	, —†	\square	+	+		
	[]	\vdash	\vdash	$\left - \right $	+	$\left \right $	+	\square	$\left \right \right $	$[] \rightarrow$	-	$\left - \right $	\square		$\left - \right $	-+	$ \ $	$ \ $		\square	\dashv	1	\square		\vdash	\rightarrow	+	\rightarrow	1	\dashv		\square	-	+	\neg	SULPS
	$[] \rightarrow$	\vdash	\vdash	+	<u> </u>	$\left - \right $	+	[]	+	$[] \rightarrow$	$\left \right. \right. \right. \right. \right. \right. \left. \right. \left. \right. \left. \right. \right. \left. \right. \left. \right. \left. \right. \left. \right. \left. \right. \left. \right. \right. \left. \right. \left. \right. \left. \right. \left. \right. \left. \right. \left. \right. \right. \left. \right. \left. \right. \left. \right. \left. \right. \right. \left. \right. \left. \right. \left. \right. \left. \right. \right. \left. \right. \left. \right. \right. \left. \right. \left. \right. \left. \right. \right. \left. \right. \right. \left. \right. \left. \right. \left. \right. \left. \right. \right. \left. \right. \left. \right. \left. \right. \left. \right. \left. \right. \right. \left. \right. \left. \right. \left. \right. \left. \right. \left. \right. \right. \left. \right. \left. \right. \left. \right. \left. \right. \left. \right. \right. \left. \right. \left. \right. \left. \right. \left. \right. \left. \right. \left. \right. \right. \left. \right. \left. \right. \left. \right. \left. \right. \right. \left. \right. \right. \left. \right. \right. \left. \right. \right. \left. \right. \right. \left. \right. \left. \right. \left. \right. \right. \right. \left. \right. \right. \left. \right. \right. \left. \right. \left$	$\left - \right $	$ \rightarrow $		$\left - \right $, —†	— †		+	\square	\dashv	1	\square		\square	\rightarrow	1	\dashv	1	\dashv	, —†	\square	-	+	\neg	DOU
	[]	\vdash	\vdash	\vdash	\vdash	\vdash	+	[]	+	$\left \right. \right. \right. \right. $	$\left \right ^{+}$	$\left - \right $	\square		$\left - \right $	\rightarrow	\square	[]	$\left \right $	\square	\dashv	1	\square		\square	\rightarrow	1	\rightarrow	1	\dashv	\rightarrow	\square	\rightarrow	+	\neg	RETAINING CLIPS
		<u> </u>	\vdash	\vdash	\vdash	\vdash		\square	+	$ \longrightarrow $	—	\vdash	-+		$\mid \rightarrow \mid$	-+	+			\square	\rightarrow	-+	\square		\square	\rightarrow	\rightarrow	\rightarrow	1	\neg		\square	\rightarrow	+		RE

KEYING

FAST-ACTING (MONOSTABLE AND BISTABLE)

AST-ACTING 10NOSTABLE 1D RISTARI F)

BISTABLE

TIME DELAY (ON PICK-UP OR DROP-OUT)

MEASUREMEN

SOCKET NUMBERING EXPLANATIONS

103

CHAUVIN ARNOUX

RGMVX | RMMZX SÉRIES

RMMV12X

PRODUCT ADVANTAGES

- High speed operation, tripping applications
- High Burden configuration, providing immunity to capacitance discharges
- Plug-in monostable tripping relays
- High performance, compact dimensions, light weight
- Solid and rugged construction for intensive duty
- Self-cleaning knurled contacts, C/O type
- Wide contact gap for a very high breaking capacity, electrical life expectancy and insulation.
- Magnetic arc blow-out as standard
- Wide range of sockets
- Retaining clip for secure relay locking on socket
- Transparent cover, LED as standard and pull-out handle

DESCRIPTION

RGMV and RMMV relays are highly reliable, high performance products, suitable for applications in very harsh and disturbed environments, such as protection, command and control systems in HV electrical substations or power stations.

The range includes relays with 4, 8 and 12 contacts.

These relays are specially designed for tripping circuit breaker applications, where a fast-acting contact is essential, in order to minimize the total operating time and to avoid destruction of very expensive equipment in emergency situations.

The high speed operation, the valuable breaking capacity and the ability to switch very low loads (few mA) as well allow their use in demanding applications, where a minimum switching time is required.

- Multiplication of HV/MV protective outputs.
- Direct actuation on HV/MV primary equipment.
- Transmission of trip alarms.

High insulation levels help to limit the propagation of induced voltages, keeping different parts of the system separated for functional safety purposes, thus avoiding unwanted intrusive phenomena. The contacts are designed to provide remarkable performance both for high, inductive loads and very low loads. Each contact is able to switch from 10mA – 10V even without gold-plating.

The knurled surface ensures excellent self-cleaning and a lower ohmic resistance thanks to the various points of electrical contact, while also improving the electrical life expectancy of the component.

Magnetic arc blow-out helps to increase the breaking capacity: the relay is suitable for controlling heavy duty loads with intensive switching frequencies.

The "High burden" (HB) configuration provides immunity against capacitance discharge currents and power to the coil, in order to avoid relay operations in the event of transients due to extensive wiring, for example.

The construction of the relays and a careful choice of the materials ensure long life expectancy and considerable ruggedness even in harsh operating environments and in the presence of strong temperature fluctuations. IP40 protection is guaranteed.

Models	Number of contacts	HIGH BURDEN ⁽¹⁾ configuration	Manual operation	Operating tim Pick-up (ms)
RGMV16X	4	-		< 0 mg
RGMV17X	4	\checkmark	-	≤ 8 ms
RMMV12X	8	-	,	< 0 mg
RMMV16X	8	√		≤ 8 ms
RMMV11	12	-	Onting	< 10
RMMV17	12	√	Option	≤ 10 ms

(1) HIGH BURDEN Configuration: for the operating and the specifications refer to the paragraph "COIL DATA - HIGH BURDEN Configuration" (see the table below).

FOR PRODUCT CODE CONFIGURATION, SEE THE "ORDERING SCHEME" TABLE

4 CO, 8 CO	12 CO	
DC: 24-48-110)-125-220V AC: 230V	
≤ 3,5 W	≤ 6 W	_
48 - 110 - 125	Vdc : < 0,3 A / < 20 ms	
DC: 80 ÷ 110%	% Un / AC: 80 ÷ 110%	
Co	ontinuous	
DC	2: > 5% Un	
	DC: 24-48-110 ≤ 3,5 W 24 Vdc < 48 - 110 - 125 220 Vdc : DC: 80 ÷ 1109 Cc	DC: 24-48-110-125-220V AC: 230V

(1) ±15 %.

Données de la bobine Configuration HIGH BURDEN	4 CO, 8 CO	12 CO	
Nominal voltages at Un	DC: 24-48-	110-125-220V	
Consumption at Un	≤ 3,5 W	≤ 6 W	
Current peak at pick-up	2 A /	/ < 1 ms	
Immunity to capacitive discharge	10 µF @ 120% Un across the coil		
Operating range	80 ÷ 1	110% Un	_
Type of duty	Con	tinuous	
Drop-out voltage	DC: >	- 5% Un	

La **CONFIGURATION HIGH BURDEN** provides higher security in plant control system, avoiding unwanted relay operation due to capacitive discharge currents, for example in case of an earth fault in long DC cables.

A typical application is where the initiating contact may be remote from tripping relay.

- HIGH BURDEN Tripping Relays is designed to withstand a "10µF capacitor discharge test".
 - \bullet Relay will not operate when a 10 μF capacitor, charged @ 120% Un, is applied across the coil.

While switching, high energy is required. After operation, high coil burden is reduced to a very low value, ensuring energy saving and avoiding overload on power supply circuit or station battery.

An electronic circuit acts as coil voltage' regulator and controls the duration of burden.

FORCIBLY GUCONTAC

SOCKET MBERING ANATIONS

NUI EXPL

FRONT CONNECTION

4	Contact data	4 CO	8 CO	12 CO		
	Current Nominal ⁽¹⁾ Maximum pulse ⁽²⁾	10A				
		20A to	or 1min 40A for 1s 150A for	IUms		
	Example of electrical life (3)		10Vdc - L/R 0ms - 350,000 oper			
	·	0.5A - 2	20Vdc - L/R 0ms - 300,000 ope	rations		
	Making capacity	30A (for 200ms) - 110Vdc - L/R 0ms: 2,000 operations				
	Minimum load ⁽⁴⁾ Standard contacts	200mW (10V, 10mA)				
	Gold-plated contact ⁽⁵⁾	50mW (5V, 5mA)				
	Maximum breaking voltage		250Vdc / 350Vac			
	Contact material		AgCdO			
	Operating time at Un (ms) ⁽⁶⁾	Vdc: ≤ 8	Vdc: ≤ 10	Vdc: ≤ 10		
	Pick-up ms	Vdc: ≤ 40	Vdc: ≤ 10 Vdc: ≤ 50	Vdc: ≤ 50		
	Drop-out ms	Vac. 2 40				

(1) On all contacts simultaneously, reduction of 30%.

while energizing or de-energizing.

(2) The maximum pulse currents are those currents that can be handled, for a specified time, by the contact. They do not refer to make or break currents.

(3) For other examples, see electrical life expectancy curves.

(4) Values referred to a new product, measured in laboratory.

The ability to maintain this performance over the time depends on the environmental conditions and the contact' frequency use. The use of gold plated contacts is recommended in the case of very low loads.

(5) A gold contact, if subjected to high loads, degrades superficially. In this case, the characteristics of the standard contact must be considered. This does not affect the operation of the relay. (6) Unless specified otherwise, the operating times are expressed excluding bounces.

Only for Vac power supply: actual value may increase of max 5ms (pick-up, worst case) or 10ms (drop-out, worst case). It depends on the sinusoid front (rising or falling)

 Isulation

 Insulation resistance (at 500Vdc)

 between electrically independent circuits and between these circuits and ground

 Dielectric withstanding voltage at industrial frequency

 between electrically independent circuits and ground

 between electrically independent circuits and ground

 between electrically independent circuits and ground

 between adjacent contacts

 Impulse withstand voltage (1.2/50µs - 0.5J)

 between open contact parts

 5 kV

 3 kV

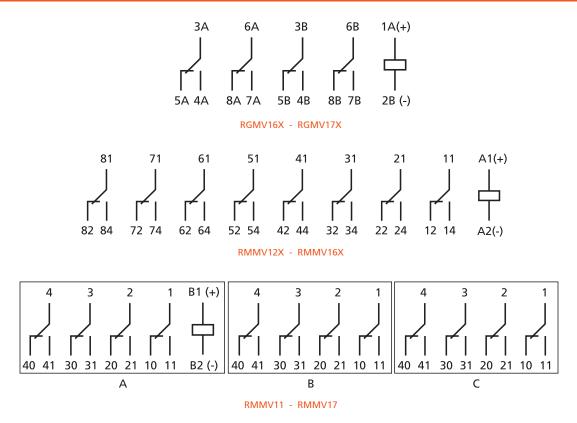
Ø	Mecanical specifications	4 CO	8CO	12 CO		
	Mechanical life expectance	у	10x10 ⁶ operations			
	Maximum switching rate Mechanica	3,600 operations / h				
	Protection rating (with relay mounted	IP40				
	Dimensions (mm)	¹⁾ 45x50x86	45x90x100	58x188x84		
	Weight (g) 270	400	810		

(1) Output terminals excluded.

÷,	Environmental characteristics			
	Operating temperature	-25 ÷ +55°C		
	Storage and shipping temperature	-40 ÷ +85°C		
	Relative humidity	Standard: 75% UR - Tropicalized: 95% UR		
	Fire behaviour	V0		

Electromechanical elementary relays
Fire behaviour
Degree of protection provided by enclosures
Electromagnetic compatibility

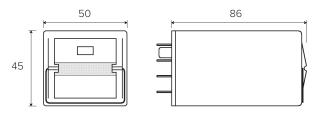
	Configurations - Options	
	TROPICALIZATION	Surface treatment of the coil with protective coating for use with RH 95%.
GOLD PLATING		Surface treatment of the contacts, blades and output terminals with gold-cobalt alloy $\geq 2\mu$. This treatment ensures long-term ability of the contact to conduct lower currents.
LEVER FOR MANUAL OPERATION		Allow to manual operating the relay (available only for the RMMV11 and RMMV17 models)
	HIGH BURDEN (HB)	The HB "High Burden" Configuration provide immunity to capacitance discharge currents & power to the coil, in order to avoid relay operations, for example in case of transients coming from extensive wiring.

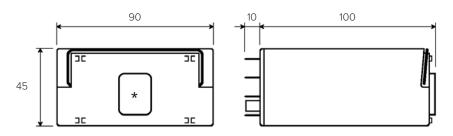

Ordering scheme

Product code	Configuration A	Configuration B	Label	Type of power supply	Nominal voltage (V)	Finish ⁽¹⁾	Q
RGMVX	1: Standard 4: Gold Plating	6X: 4 contacts 7X: 4 contacts with HB		C: Vdc A: Vac	Vdc 024 - 048 - 110 - 125 Vac 230 ⁽²⁾	T: Tropicalized coil (lever for manual operation not available)	FAST-ACTIN
RMMVX	1: Standard 4: Gold Plating	2X: 8 contacts 6X: 8 contacts with HB	F	C: Vdc A: Vac	Vdc 024 - 048 - 110 - 125 Vac 230 ⁽²⁾	T: Tropicalized coil (lever for manual operation always included)	DELAY
RMMVX	1: Standard 4: Gold Plating	1: 12 contacts 7: 12 contacts with HB		C: Vdc A: Vac	Vdc 024 - 048 - 110 - 125 Vac 230 ⁽²⁾	T: Tropicalized coil M: Lever for manual operation	H

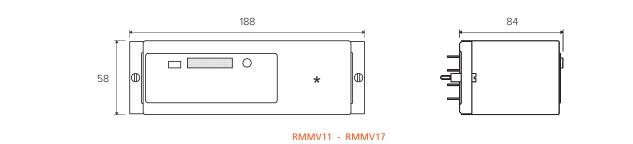
Optional value. Possible the multiple choice (Ex. TM)
 NOT AVAILABLE FOR HB Configuration

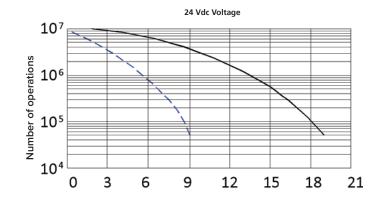
[RGMV	RGMV 1 7X C 024								
ple		RGMV17X-C024= R	cts, 4 C/O, High Burden co	onfiguration, 24Vdc coil						
xan	RMMV 4 1 A 230 M									
ш		RMMV41-A230/M=	Relay with gold plating,	12 C/O, 230Vac coil, leve	r for manual operation					

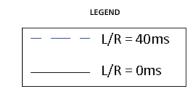

Wiring diagram

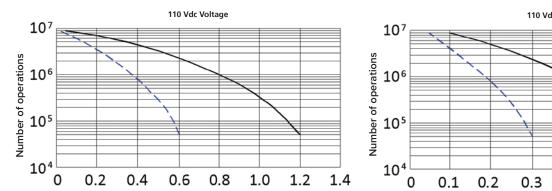

PCB MOUNT

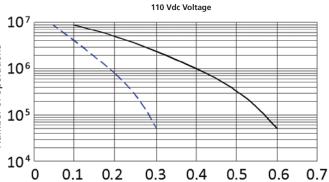
VINING CLIPS




RGMV16X - RGMV17X




RMMV12X - RMMV16X



Electrical life expectancy

Sockets		RGMV.x6X - RGMV.x7X	RMMVx2X - RMMVx6X	RMMVx1 - RMMVx7
Type of installation	Type of outputs		Model	
Wall or DIN H35 rail	Screw	48BIP20-I DIN	96IP20-I DIN	PAVM481
mounting	Spring clamp	PAIR160	PAIR320	-
	Screw	-	-	PRVM481
Flush mounting	Spring clamp	PRIR160	PRIR320	-
	Double faston (4.8 x 0.8 mm)	ADF2	ADF4	PRDM481

RGMV.x6X - RGMV.x7X	RMMVx2X - RMMVx6X	RMMVx1 - RMMVx7	STAE
	Modèle		
		-	
RG48	RMC48 ⁽¹⁾	-	о Ш <mark>П</mark>
		-	CTIN STAB
-	-	Fixing with integrated screws	FAST-A (MONO:
	RG48	RG48 RMC48 ⁽¹⁾	Modèle - RG48 RMC48 ⁽¹⁾ - - - -

(1) 2 pieces for each relay

SOCKET NUMBERING EXPLANATIONS

FRONT CONNECTION

BACK CONNECTION

PCB MOUNT

RETAINING CLIPS

RGMV13

RMMV12

PRODUCT ADVANTAGES ____

- Fast-acting monostable relay
- Solid and rugged construction for heavy or intensive duty
- Very long electrical life expectancy and exceptional endurance
- Self-cleaning knurled contacts
- Direct current operation
- Retaining clip or fixing screws for secure locking of relay to socket
- Transparent cover, pull-out handle or fixing/pulling screws
- Label holder in cover for customer's use
- Positive mechanical keying for relay and socket

DESCRIPTION.

Fast-acting **monostable relays** are available in 6 models with different types and numbers of contacts. This family of relays is able to guarantee high speed switching of contacts during pick-up or during drop-out, depending on the model. All models are based on the electromechanical design of the G series, except for the RGRE, which utilizes reed contact technology. These relays can be operated off a d.c. power supply.

In an instantaneous monostable relay, the closure of an NO contact takes normally between 15 and 40 ms, depending on the particular product specifications. By contrast, a fast-acting relay is able to close the contact in a time of between 2.5 and 10 ms.

The operating time is measured from the moment when the coil is energized/de-energized until completion of the change in status and stabilization of the contact, including bounces. A 'bounce' is an intermediate position assumed by the contact during the course of stabilization in its final position. Unless specified otherwise, the operating times indicated for our relays include the duration of the bounce. It is advisable to discuss this aspect thoroughly, with the manufacturer, when selecting the component. Knurled contacts ensure not only better self-cleaning characteristics, but also lower ohmic resistance thanks to multiple points of electrical connection, thereby extending the electrical life expectancy of the component. Typical sectors of use are among the most demanding, such as, for example, electricity generating stations, electrical transformer stations, fixed equipment for railways, or industries using continuous production processes (chemical and petrochemical, rolling mills, cement factories, etc.). The **performance and reliability** of the product have secured its **approval with ENEL** and other multi-utilities.

Fast-acting relays are often incorporated into circuits of special importance, such as those providing protection and breaker functions on a power line in the event of faults occurring. With this in mind, the operating speed is an essential parameter for electrical system designers. The contacts are connected to multifunction digital protection devices or recording instruments (disturbance recorders).

Like all our relays, the models in the fast-acting monostable series are assembled as part of a controlled manufacturing process in which every step of production is verified by the next step in succession. In effect, each relay is calibrated and tested individually, by hand, in such a way as to guarantee top reliability.

Models	Turno	Number of contacts	Nominal current	Operating time ⁽¹⁾	
wodels	Туре	Number of contacts	Nominal current	Pick-up	Drop_out
RGRE12	Monostable	2 CO (reed)	2 A	≤ 2,5 ms	≤ 3 ms
RGMV12	Monostable	4 CO	10 A	≤ 8 ms	≤ 45 ms
RGMV13	Monostable	4 NC	10 A	-	≤ 8 ms
RMMV12	Monostable	8 NO	10 A	≤ 6 ms	-
RMMV13	Monostable	4 NO + 4 NC	10 A	≤ 6 ms (NO)	≤ 6 ms (NC)
RMMZ11	Monostable	8 CO	10 A	≤ 8 + 5 ms	≤ 50 ms

(1) Unless specified otherwise, the operating time signifies until stabilization of the contact (including bounces).

FOR CONFIGURATION OF PRODUCT CODE, SEE "ORDERING SCHEME" TABLE

Þ	Coil specifications	RGRE12	RGRE12 RGMV12 RGMV13 RMMV12 RMMV13 RM							
	Nominal voltages Un			DC: 24-48-1	10-125-220 ⁽¹⁾			T-AC		
	Consumption at Un	1 W	4	W		7 W		FAS MOI		
	Operating range	DC: 80120% Un			DC: 80110% Un	I				
	Type of duty			Conti	nuous			- A		
	Drop-out voltage ⁽²⁾			DC: >	5% Un			DELA.		

(1) Other values on request.

(2) Limit value for supply voltage, expressed as % of the nominal value, beneath which the relay is certain to be de-energized.

۲	Contact specifications	RGRE12	RGMV12	RGMV13	RMMV12	RMMV13	RMMZ11
	Number and type	2 CO, form C REED	4 CO, form C	4 CO, form C	8 NO	4 NO + 4 NC	8 CO, form C
	Current Nominal ⁽¹⁾ Maximum peak ⁽²⁾ Maximum pulse ⁽²⁾	2A - -			10A or 1min - 40A 150A for 10m		
	Example of electrical life expectancy ⁽³⁾	0.1A - 110Vdc - L/R=40ms - 10 ⁵ operations 1,800 operations/hour	0.3		L/R = 40 ms - 0 operations/ł	10⁵ operation: nour	5 —
	Minimum load	200 mW (10 V, 10 mA)		200	mW (10 V, 10	mA)	
	Maximum breaking voltage	300 V		35	0 VDC / 440 V	AC	
	Contact material	Rh			AgCdO		
	Operating time at Un (ms) (4)	RGRE12	RGMV12	RGMV13	RMMV12	RMMV13	RMMZ11
	Pick-up (NO contact closing) Drop-out (NC contact closing)	≤ 2.5 ≤ 3	≤ 8 ≤ 45	- ≤ 8	≤ 6 -	≤ 6 ≤ 6	$\leq 8 + 5^{(5)}$ ≤ 50

(1) On all contacts simultaneously, reduction of 30%.

(2) Maximum peak and pulse currents are those currents that can be handled, for a specified time, by the contact. They do not refer to steady or interrupted currents.

(3) For other examples, see electrical life expectancy curves.

(4) Unless specified otherwise, operating times are understood as comprising stabilization of the contact (inclusive of bounces). (5) Bounces = 5 ms.

Insulation 4

Insulation resistance (at 500Vdc)

between electrically independent circuits and between these circuits and ground

Withstand voltage at industrial frequency

between electrically independent circuits and between these circuits and ground between adjacent contacts

2 kV (1 min) - 2.2 kV (1 s)

> 10,000 MΩ

2 kV (1 min) - 2.2 kV (1 s)

5 kV

Impulse withstand voltage (1.2/50µs - 0.5J) between electrically independent circuits and between these circuits and ground

Mechanical specifications		RGRE12	RGMV12	RGMV13	RMMV12	RMMV13	RMMZ11
Mechanica	al life expectancy	20x10 ⁶ operations	20x10 ^e op	erations	10	x10 ⁶ operations	5
Maximum switching rate	Mechanical	3,600 ops. / h		1,800) operations / h	our	
Degi	ree of protection			IP40			
[Dimensions (mm)	45x50x112 ⁽¹⁾	45x50x112 (1)	45x50x86 (1)		132x58x84 ⁽¹⁾	
	Weight (g)	190	320	270		530	

(1) Excluding output terminals

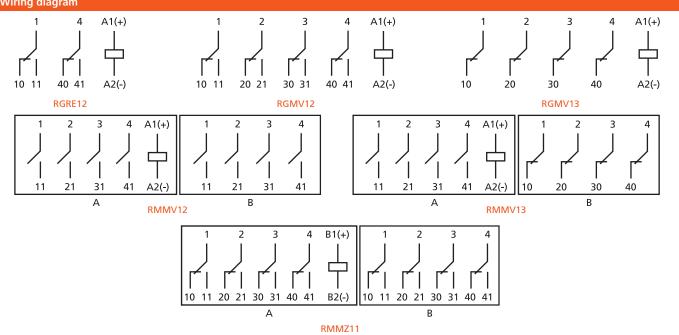
Operating temperature	-25 to 55°C
Storage and shipping temperature	-25 to 70°C
Relative humidity	Standard: 75% RH - Tropicalized: 95% RH
Fire behaviou	VO

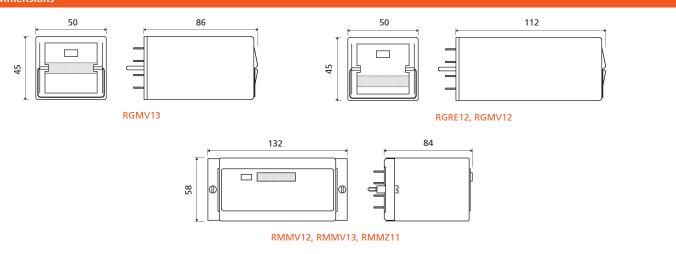
Standards and reference values	
EN 61810-1, EN 61810-2, EN 61810-7	Electromechanical elementary relays
EN 60695-2-10	Fire behavior
EN 50082-2	Electromagnetic compatibility
EN 60529	Degree of protection provided by enclosures

Unless otherwise specified, products are designed and manufactured according to the requirements of the European and International standards indicated above. In accordance with EN 61810-1, all items of technical data are referred to ambient temperature 23 °C, atmospheric pressure 96kPa and 50% humidity. Tolerance for coil resistance, nominal electrical input and nominal power is ±7%.

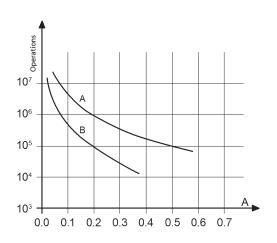
Configurations - Options	
TROPICALIZATION	Surface treatment of the coil with protective coating for use with RH 95%.
LEVER FOR MANUAL OPERATION	Allows manual operation of the relay, with the cover closed, using a screwdriver (RMMZ11 only)

Ë	Ordering scheme						
	Product code	Configuration	Label	Type of power supply	Nominal voltage (V) ⁽¹⁾	Finish ⁽²⁾	Keying position code ⁽³⁾
	RGRE	12 : 2 CO reed contacts					
	RGMV	12 : 4 CO contacts 13 : 4 NC contacts	F	C : Vdc	024 - 048 - 110	T: Tropicalized coil M: Manual operation ⁽⁴⁾	VVV
	RMMV	12 : 8 NO contacts 13 : 4 NO contacts + 4 NC contacts		C. Vuc	125 - 220		~~~
_	RMMZ	11:8 CO contacts					
	RGMV	12	F	С	110		
elamev		RGMV12F-C110 = Fas	t-acting	monostable relay v	/ith 4 change-over c	ontacts and 110Vdc coi	Ι.
	RMMZ	11	F	С	048	Т	
		MZ11F-C048 = Fast-acti	ng mono	ostable relay with 8	change-over contac	ts and 48Vdc tropicalize	ed coil.


(1) Other values on request.


(2) Optional value. Multiple selection possible (e.g. TM).

(3) Optional value. Positive mechanical keying is defined according to the manufacturer's model.


(4) RMMZ11 only.

Wiring diagram

Electrical life expectancy

Contact loading: 110Vdc, L/R 40 ms Curve A: RMMZ11 Curve B: RGMV12-13, RMMV12-13

	RM	MZ11	
U	I (A)	L/R (ms)	Operations
110 Vdc	0.5	40	100,000
110 Vdc	0.6	10	300,000
120 Vdc	0.7	40	100,000
125 Vdc	1.2	0	1,000,000
220 Vdc	0.1	40	100,000
220 Vdc	0.25	10	100,000
U	I (A)	cosφ	Operations
110 Vac	1	1	2,000,000
110 Vac	1	0.5	1,500,000
110 Vac	5	1	1,000,000
110 Vac	5	0.5	500,000
220 Vac	0.5	1	2,000,000
220 Vac	1	0.5	600,000
220 Vac	5	1	650,000
220 Vac	5	0.5	600,000

Switching frequency: 1,200 operations/hour
--

RGMV12 - 13								
U	I (A)	L/R (ms)	Operations					
110Vdc	0.2	40	500,000					
220Vdc	0.2	10	80,000					
U	I (A)	cosφ	Operations					
110 Vac	1	1	1,200,000					
110 Vac	1	0.5	1,000,000					
110 Vac	5	1	500,000					
110 Vac	5	0.5	300,000					
220 Vac	0.5	1	1,200,000					
220 Vac	1	0.5	500,000					
220 Vac	5	1	400,000					
220 Vac	5	0.5	300,000					

Switching frequency: 1,200 operations/h (*) = 600 operations/hour

Sockets and retaining clips			RGRE - RGMV12 - RG	RMMV12 - RMMV13 - RMMZ11	
Type of installation Type of outputs		Sockets	Clip for RGRE/RGMV12	Clip for RGMV13	Sockets
Wall or DIN rail mounting Screw		PAVG161	VM1222	VM1223	PAVM321
Flush mounting Double faston (4.8 × 0.8 mm)		PRDG161	VM1222	VM1223	PRDM321
	Screw	PRVG161	VM1222	VM1223	PRVM321

Mounting tips

The preferred mounting position is on the wall, with the relay positioned horizontally in the reading direction on the nameplate. For correct use of the relays, they should be spaced apart by at least 5 mm in the horizontal direction (G series) and 20 mm in the vertical direction (G and M series). This is to allow correct upward dissipation of the heat generated by the coil. Set these distances according to the socket used. Distances can be reduced depending on the environmental conditions during operation, and on the relay duty cycle. For safe and secure operation of G series relays, it is advisable to use retaining clips. Retaining clips are not required for M series relays, as a secure connection is guaranteed by the fixing screws. These same screws also serve to facilitate installation and removal of the relay. To ensure correct use, the screws must be tightened / loosened in alternating sequence, by degrees. No special maintenance is required.

Condensation can form inside the relay when powered up and the outside ambient temperature is cold; this is quite normal and does not affect the operation of the relay. The plastic materials of the relay do not possess hygroscopic properties.

RGBZ10-11 RMBZ30 SERIES fast-acting

PRODUCT ADVANTAGES _____

- Fast-acting bistable relay
- Solid and rugged construction for heavy or intensive duty
- Very long electrical life expectancy and exceptional endurance
- Self-cleaning knurled contacts
- Direct current operation
- Retaining clip or fixing screws for secure locking of relay to socket
- Transparent cover, pull-out handle or fixing/pulling screws
- Label holder in cover for customer's use
- Positive mechanical keying for relay and socket

DESCRIPTION .

Fast-acting bistable relays are available in 3 models with **3**, **4 and 7 change-over contacts**. This family of relays is able to guarantee high speed switching of contacts. Sharing the same basic electromechanical design as relays of the G series, they offer the same specifications and benefits. These relays can be operated off a d.c. power supply.

In an instantaneous bistable relay, the closure of an NO contact takes normally between 30 and 60 ms, depending on the particular product specifications. In contrast, a fast-acting relay is able to close the contact in a time of **between 10 and 20 ms**.

The operating time is measured from the moment when the coil is energized until completion of the change in status and stabilization of the contact, including bounces. A 'bounce' is an intermediate position assumed by the contact during the course of stabilization in its final position. It is advisable to discuss this aspect thoroughly with the manufacturer, when selecting the component. The contacts used are of a type designed to give good levels of performance both with **high and strongly inductive d.c. loads**, and with **particularly low loads** such as interface signals; inclusion of the magnetic arc blow-out function (optional) helps to achieve a considerable increase in breaking capacity. **Knurled contacts** ensure not only have better **self-cleaning** characteristics, but also lower ohmic resistance thanks to multiple points of electrical connection, thereby extending the electrical life expectancy of the component.

Typical sectors of use are among the most demanding, such as, for example, electricity generating stations, electrical transformer stations, fixed equipment for railways, or industries using continuous production processes (chemical and petrochemical, rolling mills, cement factories, etc.). The performance and reliability of the product have secured its approval with ENEL and other multi-utilities.

Fast-acting relays are often incorporated into circuits of key importance, such as those providing protection and breaker functions on a power line in the event of faults occurring. With this in mind, operating speed is an essential parameter for electrical system designers. The contacts are connected to multifunction digital protection devices or recording instruments (disturbance recorders).

Like all our relays, the models in the fast-acting bistable series are assembled as part of a controlled manufacturing process in which every step of production is verified by the next step in succession. In effect, each relay is calibrated and tested individually, by hand, in such a way as to guarantee top reliability.

114 CHAUVIN ARNOUX

Models	Tuno	Number of contacts	Nominal current	Operating time ⁽¹⁾		
Nodels IV	Туре	Number of contacts	Nominal current	Pick-up	Drop-out	
RGBZ10	Bistable	3	12 A	≤ 8 + 4 ms	≤ 9 + 25 ms	
RGBZ11	Bistable	4	12 A	≤ 8 + 7 ms	≤ 9 + 25 ms	
RMBZ30	Bistable	7	10 A	≤ 10 + 8 ms	≤ 10 + 35 ms	

(1) Operating times are expressed as time of first contact + bounce times.

Â

FOR CONFIGURATION OF PRODUCT CODE, SEE "ORDERING SCHEME" TABLE

Coil specifications	RGBZ10	RGBZ11	RMBZ30		
Nominal voltages Un	DC: 24-48-110-125-220 ⁽¹⁾				
Consumption at Un (DC/AC)	18 W	(2)	36 W ⁽²⁾		
Operating range					
Type of duty		Continuous			

Minimum control pulse 50ms. (1) Other values on request.

(2) During latch and unlatch. Power consumption is zero on completion of the operating cycle, as the coil de-energizes automatically.

Contact speci	ifications	RGBZ10	RGBZ11	RMBZ30		
Number and type		3 CO, form C	4 CO, form C	7 CO, form C		
Current	Nominal ⁽¹⁾	12	A	10 A		
	Maximum peak (2)		20A for 1min - 40A for 1s			
	Maximum pulse (2)	150A for 10ms				
Example of electrical life expectancy (3)		0.5A - 110 Vdc - L/R 40ms - 10 ⁵ operations - 1,800 operations/hour				
	Minimum load		200 mW (10 V, 10 mA)			
Maxir	num breaking voltage	350 VDC / 440 VAC				
Contact material		AgCdO				
Operating time at Un (ms) ⁽⁴⁾		RGBZ10	RGBZ11	RMBZ30		
Pick-u	p (NO contact closing)	≤ 8 + 4	≤ 8 + 7	≤ 10 + 8		
Drop-oi	ut (NC contact closing)	≤ 9 + 25	≤ 9 + 25	≤ 10 + 35		

(1) On all contacts simultaneously, reduction of 30%.
 (2) Maximum peak and pulse currents are those currents that can be handled, for a specified time, by the contact. They do not refer to steady or interrupted currents.
 (3) For other examples, see electrical life expectancy curves.

(4) Operating times are expressed as time of first contact + bounce times.

4	Insulation		FRONT
	Insulation resistance (at 500Vdc)		UN N
	between electrically independent circuits and between these circuits and ground	> 10,000 MΩ	0
	between open contact parts	> 10,000 MΩ	
	Withstand voltage at industrial frequency		
	between electrically independent circuits and between these circuits and ground	2 kV (1 min) - 2.2 kV (1 s)	NO
	between open contact parts	2 kV (1 min) - 2.2 kV (1 s)	BACK
	between adjacent contacts	2 kV (1 min) - 2.2 kV (1 s)	BANNBA
	Impulse withstand voltage (1.2/50µs - 0.5J)		0
	between electrically independent circuits and between these circuits and ground	5 kV	
	between open contact parts	4 kV	
			F

₿	Mechanical specification	S	RGBZ10	RGBZ11	RMBZ30		
	Mechanical life expectancy						
	Maximum switching rate Mechanical		900 operations/hour				
	Degree of protection Dimensions (mm) Weight (g)						
			45x50x86 ⁽¹⁾	45x50x112 ⁽¹⁾	132x58x86 ⁽¹⁾		
			280	370	450		

(1) Excluding output terminals

115

- Q	Environmental specifications	
	Operating temperature	-25 to 55°C
	Storage and shipping temperature	-25 to 70°C
	Relative humidity	Standard: 75% RH - Tropicalized: 95% RH
	Fire behavior	V0

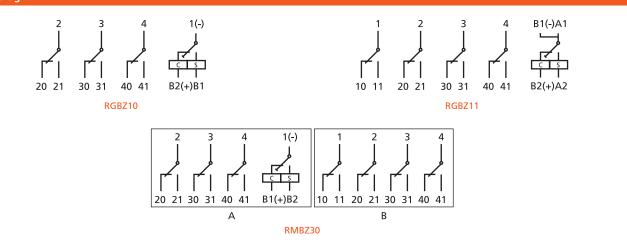
Q	Standards and reference values	
	EN 61810-1, EN 61810-2, EN 61810-7	Electromechanical elementary relays
	EN 60695-2-10	Fire behavior
	EN 50082-2	Electromagnetic compatibility
	EN 60529	Degree of protection provided by enclosures

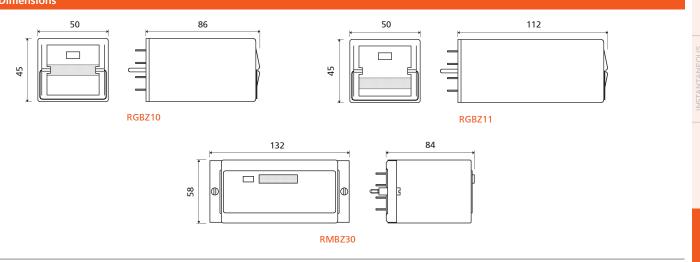
Unless otherwise specified, products are designed and manufactured according to the requirements of the European and International standards indicated above. In accordance with EN 61810-1, all items of technical data are referred to ambient temperature 23 °C, atmospheric pressure 96kPa and 50% humidity. Tolerance for coil resistance, nominal electrical input and nominal power is ±7%.

Configurations - Options	
TROPICALIZATION	Surface treatment of the coil with protective coating for use with RH 95%.
LEVER FOR MANUAL OPERATION	Allows manual operation of the relay, with the cover closed, using a screwdriver (except RGBZ11).

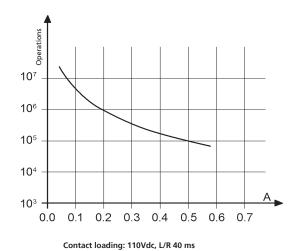
Ë	Ordering scheme								
	Product code	Configuration	Label	Type of power supply	Nominal voltage (V) ⁽¹⁾	Finish ⁽²⁾	Keying position code ⁽³⁾		
	RGBZ	10: 3 CO contacts 11: 4 CO contacts	F	C: Vdc	024 - 048 - 110 125 - 132 - 144 220			T: Tropicalized coil	~~~
	RMBZ	30: 7 CO contacts	F	C: Vac		M: Manual operation ⁽⁴⁾	ХХХ		

đ	RGBZ	10	F	С	110			
nple	RGBZ10F-C110 = Fast-acting bistable relay with 3 change-over contacts and 110Vdc coil.							
XAr	RMBZ	30	F	С	048	Т		
ш	RI	ts and 48Vdc tropicaliz	ed coil.					


(1) Other values on request.


(2) Optional value. Multiple selection possible (e.g. TM).

(3) Optional value. Positive mechanical keying is defined according to the manufacturer's model .


(4) RMBZ30 only.

Wiring diagram

Electrical life expectancy

U	I (A)	L/R (ms)	Operations
110 Vdc	0.5	40	100,000
110 Vdc	0.6	10	300,000
120 Vdc	0.7	40	100,000
125 Vdc	1.2	0	1,000,000
220 Vdc	0.1	40	100,000
220 Vdc	0.25	10	100,000
U	I (A)	cosφ	Operations
110 Vac	1	1	2,000,000
110 Vac	1	0.5	1,500,000
110 Vac	5	1	1,000,000
110 Vac	5	0.5	500,000
220 Vac	0.5	1	2,000,000
220 Vac	1	0.5	600,000
220 Vac	5	1	650,000
220 Vac	5	0.5	600,000
		ļ.	

contact	louding. The vac, E/R 40 ms		1	(
			220 Vac	5	0.5	600,000		0
		Switching fre	quency: 1,20	00 operations/ho	our		SOCKET NUMBERING	
								- S NUN NUN
Sockets and retaining clips			RGBZ1	0 - RGBZ1	1		RMBZ30	
Type of installation	Type of outputs	Socket	Clip for RG	GBZ10	Clip for R	GBZ11	Socket	- NOI
Wall or DIN rail mounting	Screw	PAVG161	VM122	22	VM12	223	PAVM321	FRONT ONNECTION
Flush mounting	Double faston (4.8 × 0.8 mm)	PRDG161	VM122	22	VM12	223	PRDM321	L Z C
	Screw	PRVG161	VM122	22	VM12	223	PRVM321	

Mounting tips

The preferred mounting position is on the wall, with the relay positioned horizontally in the reading direction on the nameplate. For safe and secure operation of G series relays, it is advisable to use retaining clips. Retaining clips are not required for M series relays, as a secure connection is guaranteed by the fixing screws. These same screws also serve to facilitate installation and removal of the relay. To ensure correct use, the screws must be tightened / loosened in alternating sequence, by degrees. No special maintenance is required.

Condensation can form inside the relay when powered up and the outside ambient temperature is cold; this is quite normal and does not affect the operation of the relay. The plastic materials of the relay do not possess hygroscopic properties.

117

CHAUVIN ARNOUX

ENERG

USER SECTORS

PRODUCT ADVANTAGES

- Plug-in monostable type fast-acting relay
- Ultra fast switching ≤ 6ms, including bounces
- Solid and rugged construction
- Long life expectancy
- High electromagnetic interference immunity
- Separate arc breaking chambers
- Magnetic arc blow-out standard
- Independent and self-cleaning contacts
- Direct current operation
- Excellent shock and vibration resistance
- Wide range of sockets
- Retaining clip for secure locking of relay on socket
- Transparent cover, pull-out handle
- Positive mechanical keying for relay and socket

DESCRIPTION

The RV series is a range of 4 monostable relays able to guarantee high speed switching. These relays have 6 contacts rated 5 A, with different configurations including all normally open, or mixed (NO+NC). The relays are assembled with coils sized in such a way as to obtain magnetic flux of particularly high strength when powered up.

Accordingly, optimization of the ferromagnetic circuit enables ultra fast switching of the contacts. The relay is immune to strong electromagnetic interference, typical of high voltage electricity distribution stations.

The self-cleaning contacts are independent, being anchored neither one to another nor to a common operating mechanism. Positioned in separate chambers, they enable better breaking of the arc. In addition, they are equipped with magnetic arc blowout, guaranteeing a particularly efficient break of direct current loads. The common contact is mounted to a separate return device, consisting in a flexible blade designed to ensure uniformity of the pressures on break contacts.

Excellent electrical and mechanical performance levels allow the product to be used in the most demanding of sectors such as, for example, control and signalling functions in electricity generating stations, electrical transformer stations or heavy industry. The most common application is as a trip relay downstream of high voltage line protection systems.

The construction of the relays and careful choice of the materials are such that they ensure long life and considerable ruggedness even in harsh operating environments.

The performance and reliability of the component have secured its approval with ENEL and other multi-utilities.

ARNOUX

Models	Number of NO contacts	Number of NC contacts
RV LV16/1	6	0
RV LV16/2	4	2
RV LV16/3	3	3
RV LV16/5	2	4

FOR CONFIGURATION OF PRODUCT CODE, SEE "ORDERING SCHEME" TABLE

ф	Coil specifications		
	Nominal voltages Un	DC: 110-125	
	Max. consumption at Un (DC)	< 7W	
	Operating range	80110% Un	
	Type of duty	Continuous	
	Drop-out voltage ⁽¹⁾	> 5% Un	DNIL
			·

(1) Limit value for supply voltage, expressed as % of the nominal value, beneath which the relay is certainly de-energized.

Contact specifications	RV LV16/1	RV LV16/2	RV LV16/3	RV LV16/5		
Nombre et type	6 NO	4 NO + 2 NC	3 NO + 3 NC	2 NO + 4 NC		
Current Nominal ⁽¹⁾	5 A					
Maximum peak (1 min) ⁽²⁾		10	A		u C	
Maximum pulse (10 ms) ⁽²⁾		100) A		TIME	
Example of electrical life expectancy	cy opening 0.3A - 110Vdc - L/R = 40ms: 105 operations					
1,800 operations / h	(closing 30A - 110Vdc - L/F	R = 0ms: 2,000 operation	S	P	
Minimum load Standard contacts		500 mW (2	0V, 20 mA)			
Gold-plated contact ⁽³⁾		100 mW (1	10V, 5 mA)			
Maximum breaking voltages		250 Vdc	/ 350 Vac		L L	
Contact material		Ag	Cu			
Operating time at Un (ms) (4)						
Pick-up (NO contact closing / NC contact opening)		≤	6			

(1) Nominal current: on all contacts simultaneously, reduction of 30%.

(2) The max. peak and pulse currents are those currents that can be handled, for a specified time, by the contact. They do not refer to steady or interrupted currents.

(3) Specifications of contacts on new relay

a) Plating material: gold-nickel alloy (>6µ)

b) When the gold-plated contact is subject to heavy loads, it will be degraded on the surface. In such case, the characteristics of the standard contact should be taken into consideration. This does not impair relay operation.

(4) Unless specified otherwise, the operating time signifies until stabilization of the contact (including bounces).

4	Insulation		
	Insulation resistance (at 500Vdc) between electrically independent circuits and between these circuits and ground between open contact parts	> 1,000 ΜΩ > 1,000 ΜΩ	FRONT
	Withstand voltage at industrial frequency between electrically independent circuits and between these circuits and ground between open contact parts between adjacent contacts Impulse withstand voltage (1.2/50µs - 0.5J)	2 kV (1 min) - 2.2kV (1 s) 1 kV (1 min) - 1.1kV (1 s) 2,5 kV (1 min) - 3kV (1 s)	BACK
	between electrically independent circuits and between these circuits and ground between open contact parts	5 kV 3 kV	

₿	Mechanical specifications			DCB M
		Mechanical life expectancy	10 ⁶ operations	L
-	Maximum switching rate	Mechanical	900 operations/hour	 ە
-	Degree o	protection (with relay mounted)	IP40	CLIP
		Dimensions (mm)	45x60x109 ⁽¹⁾	U N N
		Weight (g)	~ 300	ETAII

(1) Excluding output terminals

119

CHAUVIN ARNOUX

ENERG

(MONOSTABLE AND BISTABLE)

SOCKET NUMBERING EXPLANATIONS

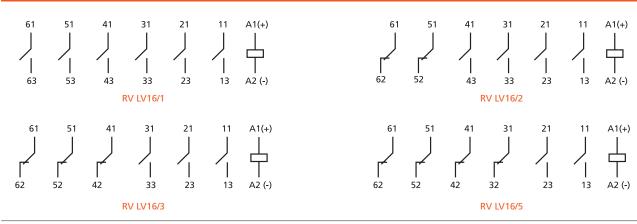
÷,	Environmental specifications	
	Operating temperature	-10 to +55 °C
	Storage and shipping temperature	-25 to +70 °C
	Relative humidity	Standard: 75% RH, Tropicalized: 95% RH
	Resistance to vibrations	5g - 10 to 55 Hz - 1 min.
	Resistance to shock	20g - 11ms
	Fire behavior	V0

Q	Standards and reference values	
	EN 61810-1, EN 61810-2, EN 61810-7	Electromechanical elementary relays
	EN 60695-2-10	Fire behavior
	EN 61000	Electromagnetic compatibility
	EN 60529	Degree of protection provided by enclosures

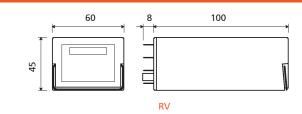
Unless otherwise specified, products are designed and manufactured according to the requirements of the European and International standards indicated above. In accordance with EN 61810-1, all items of technical data are referred to ambient temperature 23 °C, atmospheric pressure 96kPa and 50% humidity. Tolerance for coil resistance, nominal electrical input and nominal power is ±7%.

	Configurations - Options	
	P2	Tropicalization of the coil with epoxy resin for use with 95% RH (@ T 50 °C). This treatment also protects the coil against corrosion which could occur by combination of the humidity with certain chemical agents, such as those found in acid atmospheres (typical of geothermal power stations) or saline atmospheres.
-	P4GEO	Gold plating of contacts with gold-nickel alloy, thickness $\ge 6\mu$. This treatment ensures long-term capacity of the contact to conduct lower currents in harsh ambient conditions such as acid atmospheres (typical of geothermal power stations) or saline atmospheres.
-	P5GEO	P4GEO gold-plating of contacts + P2 coil tropicalization.

Ë	RV Ordering scheme							
	Product code	Number of contacts	Configuration A	Configuration B	Label	Type of power supply	Nominal voltage (V)	Keying position ⁽²⁾
	RVLV16/1 RVLV16/2 RVLV16/3 RVLV16/5	6 NO 4 NO + 2 NC 3 NO + 3 NC 2 NO + 4 NC	1: Standard	0: Standard 2: P2 4: P4 GEO 5: P5 GEO	F	C: Vdc	110 - 125	ххх


	RVLV16/1	1	2	F	С	110			
nple	RVLV16/112F-C110 : RV relay with 6 NO contacts, ENEL-approved according to LV16 specification, nominal voltage 110Vdc, P2 finish								
Exar	RVLV16/5	1	0	F	С	110			
ш	RVLV16/510F-C110 : RV relay with 2 NO contacts + 4 NC contacts, ENEL-approved according to LV16 specification, nominal voltage 110Vdc								

(1) This product is available only in the ENEL type-approved version, according to LV15/LV16 specification. The designation "LV16/x" contained in the product code identifies the typeapproved model.


For a full list of ENEL compliant and type-approved products, refer to the dedicated catalog "STATIONS SERIES

(2) Optional value. Mechanical keying is applied according to the manufacturer's coding.

Wiring diagram

Sockets and retaining clips	RV	
Number of terminals (standard dimensions 5x0.8mm)	14	Retaining clip
For wall or rail mounting		
Spring clamp, wall or DIN H35 rail mounting	PAIR240	RL48
Screw, wall or DIN H35 rail mounting	78BIP20-I DIN	RL48
Screw, wall mounting	78BL	RL48
Double faston, wall mounting	78L	RL48
For flush mounting		
Double faston (4.8 × 0.8 mm)	ADF3	RL48
Screw	73IL ⁽¹⁾	RL43

(1) Insert the clip before fastening the socket on the panel.

For more details, see specifications of mounting accessories.

Mounting tips

The preferred mounting position is on the wall, with the relay positioned horizontally in the reading direction on the nameplate. For correct use of the relays, they should be spaced apart by at least 5 mm in the horizontal direction and 20 mm in the vertical direction. This is to allow correct upward dissipation of the heat generated by the coil. Set these distances according to the socket used. Distances

can be reduced depending on the environmental application conditions and on the relay duty cycle.

For safe and secure operation, it is advisable to use retaining clips.

No special maintenance is required.

Condensation can form inside the relay when powered up and the outside ambient temperature is cold; this is quite normal and does not affect the operation of the relay. The plastic materials of the relay do not possess hygroscopic properties.

ENERG

MONOSTABLE

INSTANTANEOUS MONOSTABLE WITH FORCIBLY GUIDED

BISTABLE

FAST-ACTING (MONOSTABLE AND BISTABLE)

TIME DELAY (ON PICK-UP R DROP-OUT

LY GUIDED

FORCIBL

ASUREMEN

SOCKET NUMBERING EXPLANATIONS

NU KP

FRONT CONNECTION

BACK

PCB MOUNT

RETAINING CLIPS

IVEVIA

TIME DELAY RELAYS (ON PICK-UP OR DROP-OUT), LOGIC FUNCTION

RDT SERIES

USER SECTORS

RDT

PRODUCT ADVANTAGES __

- Plug-in relay with time delay on pick-up or on drop-out
- Only model programmable on pick-up or on drop-out
- High performance, compact dimensions
- Wide time setting range from 0.1s to more than 16 hours, great accuracy over the entire adjustment range
- Led optical indicators monitoring power supply and timer status
- Magnetic arc blow-out for higher breaking capacity
- Self-cleaning knurled contacts
- Relay coupled automatically to socket, with no need for a retaining clip
- Operation with d.c. and/or a.c. power supply
- Wide variety of configurations and customizations
- Transparent cover, pull-out handle
- Label holder in cover for customer's use
- Positive mechanical keying for relay and socket

DESCRIPTION _

The **RDT series** is a range of relays with electronic time delay on pick-up or on drop-out, consisting of 6 models with 4 changeover contacts, from 10 A (nominal). RDT relays are created by assembling electromechanical units of the RDM series with a **digital electronic circuit**. The electronic circuit is assembled using a small number of selected professional components for top reliability. The electronics are **immune to strong EMC interference**, typical of high voltage electricity distribution stations.

These monostable relays are capable of switching times ranging from **0.1 second to over 16 hours**, providing **extreme accuracy** over the entire setting range. This is made possible by the fact that the relay offers intermediate scales, which the user can select by means of rotary switches positioned on the front of the enclosure.

The contacts used are of a type designed to give good levels of performance both with high and strongly inductive d.c. loads, and with particularly low loads such as interface signals; inclusion of the magnetic arc blow-out function, when installed, helps to achieve a **considerable increase in breaking capacity**. Knurled contacts ensure not only better self-cleaning characteristics, but also lower ohmic resistance thanks to multiple points of electrical connection, thereby extending the electrical life expectancy of the component. The timing function can be utilized in two modes: "on pick-up" or "on drop-out"; models are available with 4 timer contacts or with 2 timer contacts and 2 instantaneous contacts.

The construction of the relays and their simplified mechanical design combine to ensure these products offer high reliability in operation, as proven by their use for over 40 years in electrical energy transmission and distribution systems, and fixed equipment used in the railway sector. Typical sectors of use are among the most demanding, such as, for example, electricity generating stations, electrical transformer stations, fixed equipment for railways, or industries using continuous production processes (chemical and petrochemical, rolling mills, cement factories, etc.).

Like all our relays, the models in the RDT series are assembled as part of a controlled manufacturing process in which every step of production is verified by the next step in succession. In effect, **each relay is calibrated and tested individually, by hand**, in such a way as to guarantee **top reliability**.

							MONOSTABLE INSTANTANEOUS
\checkmark	Models		of contacts	Magnetic arc blow-out	Separate control voltage	Function	MONOS
		Instantaneous	Time-delayed		voltage		Ξ
	RDT.x1c	-	4			Pick-up / Drop-out	ω Ξ O
	RDT.x7c	-	4	•		Pick-up / Drop-out	EOUS
	RDT.x2c	2	2			Pick-up / Drop-out	ABLE LY GU
	RDT.x8c	2	2	•		Pick-up / Drop-out	STAN NOST RCIB
	RDT.x4c	-	4		•	Pick-up / Drop-out	N O O
	RDT.x9c	-	4	•	•	Pick-up / Drop-out	

C

9

FOR CONFIGURATION OF PRODUCT CODE, SEE "ORDERING SCHEME" TABLE

ф	Coil specifications	RDT.x1c-x4c-x7c-x9c	RDT.x2c-x8c					
	Nominal voltages Un	AC / DC: 12-24-48-11	0-125-132-144-220 (1)					
	Consumption at Un (DC/AC)	3.5W	4.5W	BLE				
	Operating range	80120% Un						
	Type of duty	Continuous						
	Drop-out voltage (2)	> 59	> 5% Un					

(1) Other values on request.

(2) Limit value for supply voltage, expressed as % of the nominal value, beneath which the relay is certain to be de-energized.

	Number and type	4 CO, form C	/
Current Nominal (1)		10A	_
	Maximum peak (2)	13A for 1min - 20A for 1s	
	Maximum pulse ⁽²⁾	100A for 10ms	
Exar	mple of electrical life	RDT.x1c-x2c-x4c : 0.2A - 110Vdc - L/R = 40ms - 10 ⁵ operations - 1,800 operations/hour	_
	expectancy ⁽³⁾	RDT.x7c-x8c-x9c : 0.5A - 110Vdc - L/R = 40ms - 10 ⁵ operations - 1,800 operations/hour	
Minimum load	d Standard contacts	200mW (10V, 10mA)	
(Gold-plated contacts	50mW (5V, 5mA)	
Maxim	um breaking voltage	250 Vdc / 300 Vac	_
	Contact material	AgCdO (moving contacts) - AgNi (fixed contacts)	_
Operating time a	at Un (ms) (4) (5)	DC - AC	_
Pick-up ((NC contact opening)	≤ 10 - ≤ 10	
Pick-up (NO contact closing)		≤ 19 - ≤ 18	
Drop-out (NO contact opening)		≤ 4 - ≤ 8	
Drop-ou [†]	t (NC contact closing)	≤ 16 - ≤ 19	

(2) Maximum peak and pulse currents are those currents that can be handled, for a specified time, by the contact. They do not refer to steady or interrupted currents.
(3) For other examples, see electrical life expectancy curves.
(4) Unless specified otherwise, the operating time signifies until stabilization of the contact (including bounces).

 (4) Unless specified otherwise, the operating time signifies until stabilization of the contact (including (5) Times for instantaneous contacts, if installed. 	bounces).	FRONT
F Insulation		FRO
Insulation resistance (at 500Vdc)		Ŭ
between electrically independent circuits and between these circuits and ground	> 10,000 MΩ	
between open contact parts	> 10,000 MΩ	_
Withstand voltage at industrial frequency		NON NON
between electrically independent circuits and between these circuits and ground	2 kV (1 min) - 2.2 kV (1 s)	ECT
between open contact parts	2 kV (1 min) - 2.2 kV (1 s)	BACK CONNECTION
between adjacent contacts	2 kV (1 min) - 2.2 kV (1 s)	0
Impulse withstand voltage (1.2/50µs - 0.5J)		
between electrically independent circuits and between these circuits and ground	5 kV	
between open contact parts	3 kV	LNU

0	Mechanical specifications					
	Mech	anical life expectancy	20x10 ⁶ operations			
	Maximum switching rate	Mechanical	3,600 operations/hour	S		
		Degree of protection	IP40	g CLI		
		Dimensions (mm)	40x40x82 ⁽¹⁾	Ž Z		
		Weight (g)	150	RETA		

(1) Excluding output terminals

÷ÖJ	Environmental specifications				
	Operating temperature	-25 to +55°C			
	Storage and shipping temperature	-25 to +70°C			
	Relative humidity	Standard: 75% RH - Tropicalized: 95% RH			
	Fire behavior	V0			

Standards and reference values	
EN 61810-1, EN 61810-2, EN 61810-7	Electromechanical elementary relays
EN61812-1	Timer relays
EN 60695-2-10	Fire behavior
EN 61000	Electromagnetic compatibility
EN 60529	Degree of protection provided by enclosures

Unless otherwise specified, products are designed and manufactured according to the requirements of the European and International standards indicated above. In accordance with EN 61810-1, all items of technical data are referred to ambient temperature 23 °C, atmospheric pressure 96kPa and 50% humidity. Tolerance for coil resistance, nominal electrical input and nominal power is ±7%.

Configurations - Options			
TROPICALIZATION Surface treatment of coil with protective coating for use in conditions of RH 95%.			
GOLD PLATING	Surface treatment of contacts, blades and output terminals with gold-cobalt alloy, thickness $\geq 2\mu$. This treatment guarantees the contact's ability to cut weaker currents over the long term.		

Ordering scheme

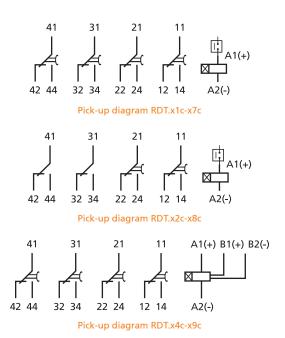
`	Ordening sch	eme						
	Product code	Application (1)	Configuration A	Configuration B	Type of power supply	Nominal voltage(V)	Finish ⁽³⁾	Keying position code ⁽⁴⁾
	RDT	E: Energy F: Railway Fixed Equipment	1: Standard 4: Gold plating	 1C: 4 CO timer contacts 2C: 2 CO timer contacts + 2 CO instantaneous contacts 4C: 4 CO timer contacts with control voltage 7C: 4 CO timer contacts with magnetic arc blow-out 8C: 2 CO timer contacts + 2 CO instantaneous contact with magnetic arc blow-out 9C: 4 CO timer contacts with control voltage and magnetic arc blow-out 	C: Vdc A: Vac 50 Hz H: Vac 60 Hz T ⁽⁵⁾ : Vdc + Vac 50 Hz	012 - 024 - 048 110 - 125 - 132 144 - 220	T: Tropicalized coil	XX

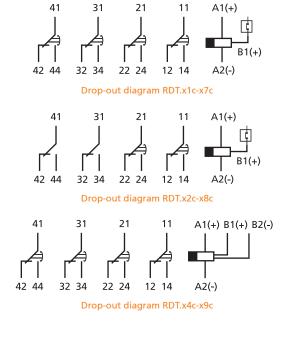
[RDT	RDT E 1 7C T 110 T ZH									
ample	RDTE17C-T110/T-ZH = ENERGY series relay with 4 CO timer contacts, magnetic arc blow-out, 110Vdc or Vac (50Hz) tropicalized coil, and keying position ZH										
ĔŇ	RDT	F	4	2C	С	024		XG			
	RDTF42c-C024 = RAILWAY series relay, fixed equipment, with 2 CO timer contacts and 2 instantaneous, gold-plated contacts, and 24Vdc coil										

(1) ENERGY: all applications except for railway.

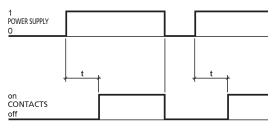
RAILWAYS, FIXED EQUIPMENT: application on fixed power systems and electrical railway traction. For list of RFI compliant and type-approved products, consult dedicated catalog "RAILWAY SERIES - RFI APPROVED".

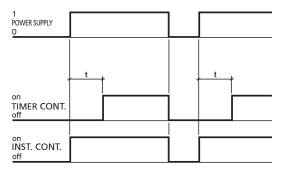
Also available is the **STATIONS** series, with ENEL approved material meeting LV15/LV16 specifications. For list of ENEL compliant and type-approved products, consult dedicated catalog "STATIONS SERIES – LV15-LV16-LV20".

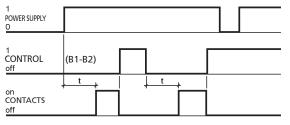

(2) Other values on request.

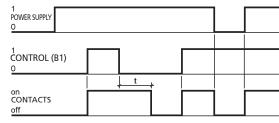

(3) Optional value.

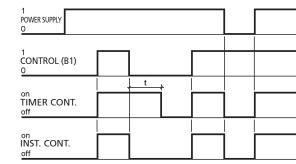
(4) Optional value. The positive mechanical keying is applied according to the manufacturer's model.

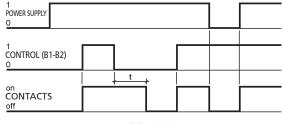

(5) AC+DC power input possible only with models RDT.x1C and RDT.x7C




Functional diagram


Pick-up delay RDT.x1c-x7c




Pick-up delay RDT.x4c-x9c Drop-out

Drop-out delay RDT.x1c-x7c

Drop-out delay RDT.x2c-x8c

Drop-out delay RDT.x4c-x9c

INSTANTANEOUS IONOSTABLE WITH ORCIBLY CUIDED

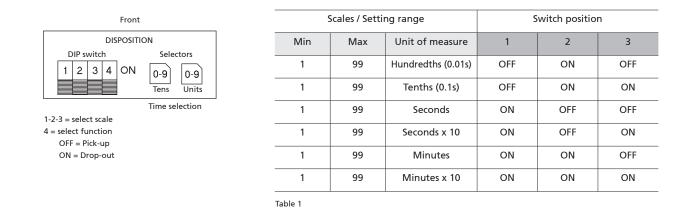
STABLE

127

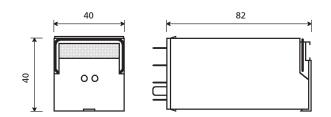
Time delay - Switching time setting			
Time setting	By means of DIP switches and selectors		
Time setting range	100 ms990 min		
Intermediate scales	6 (0.99 - 9.9 - 99 - 990 secondes / 99 - 990 minutes)		
Resolution of switching time setting	1/100 of selected scale		
Operating accuracy (0.81.1 Un, t=20°C) ⁽¹⁾	±3 % at low end of scale - ±0.5 % at high end of scale		
Accuracy, repeatability	± 2 %		
Reset	< 200 ms		
Insensitivity to voltage drops	< 100 ms		
Indication	Red led = presence of power supply Green led = status of relay outputs (lights up with relay energized)		

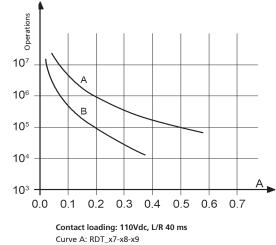
1) Additional error for drop-out versions: 100 ms

The timer function and the switching time are set by way of a single 4-bit DIP switch and two rotary selectors adjustable through 10 positions, located on the front of the relay (see "FRONT"). These are accessible by opening the flap on the cover of the relay. The time delay function can be associated either with pick-up or with drop-out; settings range from 100 ms up to 990 minutes.


Selection of function: select the OFF or ON position at switch no. 4. OFF: Pick-up - ON: Drop-out.

Selection of operating time: the unit of measure is selected with switches no. 1-2-3, and the desired delay interval by means of the 2 rotary selectors.


To set the switching time correctly, the first step required is to identify and select one of the 6 intermediate scales indicated in table 1. The intermediate scale should be the next higher numerically than the value of the required switching time.


E.g. Switching time: 1'14" (74 seconds), Intermediate scale setting: 99 seconds.

This done, proceed to set the desired value with the two rotary selectors. E.g. 74 seconds, select 7 on the "TENS" selector and 4 on the "UNITS" selector.

Dimensions

Curve B: RDT_x1-x2-x4

	RDT_x	1-x2-x4	
U	I (A)	L/R (ms)	Operations
110 Vdc	0.2	0.2 40	
220 Vdc	0.2	10	80,000
U	I (A)	cosφ	Operations
110 Vac	1	1	1,200,000
110 Vac	1	0.5	1,000,000
110 Vac	5	1	500,000
110 Vac	5	0.5	300,000
220 Vac	0.5	1	1,200,000
220 Vac	1	0.5	500,000
220 Vac	5	1	400,000
220 Vac	5	0.5	300,000

Switching frequency: 1,200 operations/hour (*) 600 operations/hour

RDT_x7-x8-x9							
U	I (A)	L/R (ms)	Operations				
110 Vdc	0.2	40	1,000,000				
110 Vdc	0.5	40	150,000				
110 Vdc	0.6	10	300,000				
110 Vdc	1	10	100,000 (*)				
220 Vdc	0.2	10	100,000				
U	I (A)	cosφ	Operations				
110 Vac	1	1	2,000,000				
110 Vac	1	0.5	1,500,000				
110 Vac	5	1	950,000				
110 Vac	5	0.5	500,000				
220 Vac	0.5	1	2,000,000				
220 Vac	1	0.5	800,000				
220 Vac	5	1	600,000				
220 Vac	5	0.5	500,000				

Switching frequency: 1,200 operations/hour

Sockets and retaining clips						
Type of installation	Type of outputs	Model	Retaining clip			
Wall or DIN H35 rail mounting	Screw	PAVD161	VM1823			
Flush mounting	Screw	PRVD161	-			
PCB-mount	Solder	PRCD161	-			

Mounting tips

The preferred mounting position is on the wall, with the relay positioned horizontally in the reading direction on the nameplate. For correct use of the relays, they should be spaced apart by at least 5 mm in the horizontal direction and 20 mm in the vertical direction. This is to allow

correct upward dissipation of the heat generated by the coil. Set these distances according to the socket used. Distances can be reduced depending on the environmental application conditions and on the relay duty cycle.

No special maintenance is required.

Condensation can form inside the relay when powered up and the outside ambient temperature is cold; this is quite normal and does not affect the operation of the relay. The plastic materials of the relay do not possess hygroscopic properties.

INSTANTANEOUS MONOSTABLE WIT FORCIBLY GUIDEL

BISTABL

BACK CONNECTION

RDTE15-16 | RGTO SERIES

RDTE161

RGTO233

PRODUCT ADVANTAGES

- Plug-in relay with time delay on drop-out
- Time settings up to 60s, no auxiliary power supply required
- Self-cleaning knurled contacts
- High performance, compact dimensions
- Solid and rugged construction for heavy or intensive duty
- Very long electrical life expectancy and exceptional endurance
- Wide variety of configurations and customizations
- Retaining clip for secure locking of relay on socket
- Transparent cover, pull-out handle
- Positive mechanical keying for relay and socket

DESCRIPTION .

The timer relays in the **RDT.15** / **RDT.16** and **RGTO** series are delay-on-drop-out devices using a capacitor wired in parallel with the coil. They require no auxiliary power supply during the timing step. The delay can be fixed (RDT.15), or adjustable (RDT.16, RGTO), from 0.1s to 60s. The delay capacitor is fitted internally on all versions.

The construction of the relays and their simplified mechanical design combine to ensure these **products offer high reliability** in operation, as proven by their use for over **40 years in electrical energy transmission and distribution systems**, and fixed equipment used in the railway sector.

The contacts used for relays of the RDT.15 and RDT.16 series are of a type able to **give good levels of performance** both with high and strongly inductive d.c. loads, and with particularly low loads such as interface signals.

Knurled contacts ensure not only better self-cleaning characteristics, but also lower ohmic resistance thanks to multiple points of electrical connection, thereby extending the electrical life expectancy of the component.

Typical sectors of use are among **the most demanding**, such as, for example, electricity generating stations, electrical transformer stations, fixed equipment for railways, or industries using continuous production processes (chemical and petrochemical, rolling mills, cement factories, etc.).

Like all our relays, the models in the RDT.15-16 and RGTO series are assembled as part of a controlled manufacturing **process in which every step of production is verified** by the next step in succession. In effect, each relay is calibrated and tested individually, by hand, in such a way as to guarantee top reliability.

odels	Number of timed contacts	Nominal current	Time delay	Time settings range
RDT.15x	4	10 A	On drop-out, fixed	0.11 s
RDT.161	4	10 A	On drop-out, adjustable	0.16 s
RGTO23x	1	5 A	On drop-out, adjustable	360 s

FOR CONFIGURATION OF PRODUCT CODE, SEE "ORDERING SCHEME" TABLE

Coil specifications	RDT.15x	RDT.161	RGTO23x	
Nominal voltages Un (1)	DC: 24-48-110-125-220	DC: 24-48-110-125-220	AC: 24-48-110-125-220	
Consumption at Un (DC/AC)	3.5	3.5 W		
Operating range	DC: 80120 % Un AC: 85110 % Un			
Type of duty	Continuous			DNILC
Drop-out voltage ⁽²⁾	DC: > 5 % Un AC : > 15 % Un			

(1) Other values on request.

(2) Limit value for supply voltage, expressed as % of the nominal value, beneath which the relay is certain to be de-energized.

۲	Contact specifi	ications	RDT.15x, RDT.161	RGTO23x	
	Number and type		4 CO, form C	2 CO, form C	DELAY CK-UP
	Current	Nominal ⁽¹⁾ Maximum peak ⁽²⁾ Maximum pulse ⁽²⁾	10A 13A for 1min - 20A for 1s 100A for 10ms	5 A - -	
	Example of el	lectrical life expectancy (3)	0.2 A - 110 Vdc - L/R 40 ms - 10 ⁵ operations - 1,800 operations/hour	0.2 A - 110 Vdc - L/R 40 ms - 10 ⁵ operations - 1,200 operations/hour	V WITH GUIDED
	Minimum load		200 mW (1	0 V, 10 mA)	ELAY LY GU
	Max	imum breaking voltage	250 Vdc	/ 300 Vac	MED

(1) Maximum peak and pulse currents are those currents that can be handled, for a specified time, by the contact. They do not refer to steady or interrupted currents. (2) For other examples, see electrical life expectancy curves.

Insulation	RDT.15x - RDT.161	RGTO23x
Insulation resistance (at 500Vdc)		
between electrically independent circuits and between these circuits and ground	> 10,000 MΩ	> 10,000 MΩ
between open contact parts	> 10,000 MΩ	> 10,000 MΩ
Withstand voltage at industrial frequency		
between electrically independent circuits and between these circuits and ground	2 kV (1 min) - 2.2 kV (1 s)	2 kV (1 min) - 2.2 kV (1 s)
between open contact parts	2 kV (1 min) - 2.2 kV (1 s)	1 kV (1 min) - 1.1 kV (1 s)
between adjacent contacts	2 kV (1 min) - 2.2 kV (1 s)	
Impulse withstand voltage (1.2/50µs - 0.5J)		
between electrically independent circuits and between these circuits and ground	5 kV	2.5 kV
between open contact parts	2.5 kV	2 kV

	between electrically independent directions and between en-	een open contact parts	2.5 kV	2.3 KV 2 kV	RONT
Q	Mechanical specifications	RDT.15x	RDT.161	RGTO23x	FRONT
	Mechanical life expectancy		20x10 ⁶ operations		
	Maximum switching rate Mechanical		3,600 operations/hour		Z
	Degree of protection		IP40		CK
	Dimensions (mm)	40x40x75 ⁽¹⁾	40x40x82 ⁽¹⁾	50x45x112 ⁽¹⁾	BAC
	Weight (g)	130	130	260	Ŭ

(1) Excluding output terminals

-25 to 55°C
-25 to 70°C
Standard: 75% RH - Tropicalized: 95% RH
V0

SOCKET NUMBERING EXPLANATIONS

CHAUVIN ARNOUX

ENERGY

Standards and reference values EN 61810-1, EN 61810-2, EN 61810-7 Electromechanical elementary relays EN 60695-2-10 Fire behavior

EN 61000 EN 60529 Fire behavior Electromagnetic compatibility Degree of protection provided by enclosures

Unless otherwise specified, products are designed and manufactured according to the requirements of the European and International standards indicated above. In accordance with EN 61810-1, all items of technical data are referred to ambient temperature 23 °C, atmospheric pressure 96kPa and 50% humidity. Tolerance for coil resistance, nominal electrical input and nominal power is ±7%.

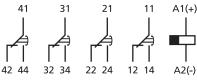
Configurations - Options	
TROPICALIZATION	Surface treatment of the coil with protective coating for use with RH 95%.

Ordering scheme

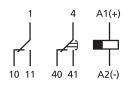
	Ordering so	cheme							
	Product code	Application (1)	Configuration A	Configuration B	Label	Type of power supply	Type of input supply (V) ⁽²⁾	Finish ⁽³⁾	Keying position code ⁽⁴⁾
_	RDT RGTO	E: Energy F: Railway Fixed Equipment	15: Fixed duration 16: Adjustable duration	1: Fixed duration 0.1s 2: Fixed duration 0.2s 3: Fixed duration 0.5s 4: Fixed duration 1s 1: Adjustable from 0.1 to 6s		C: Vdc			
_		-	23: Adjustable duration	3: Adjustable from 3 to 10s 4: Adjustable from 10 to 30s 5: Adjustable from 20 to 60s	F	A: Vac 50 Hz H: Vac 60 Hz	024 - 048 - 110 125 - 220	T: Tropicalized coil	XX

0	RDT	E	16	1	F	С	110	Т		
nple	RDTE161F-C110/T = ENERGY series relay, with 4 CO contacts, time delay on drop-out adjustable from 0.1 to 6s, and 110Vdc tropicalized coil.									
Exar		RGTO	23	3	F	С	024			
	RGTO	RGTO233F-C024 = Relay with 2 contacts: 1 CO instantaneous, 1 CO time delay on drop-out adjustable from 3 to 10 seconds, and 24Vdc coil.								

(1) ENERGY: all applications except for railway.

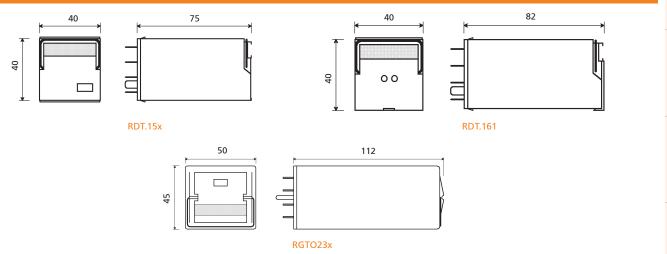

RAILWAYS, FIXED EQUIPMENT: application on fixed power systems and electrical railway traction. For list of RFI approved and conforming products, consult dedicated catalogue "RAILWAY SERIES – RFI APPROVED".

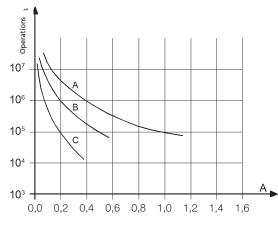
Also available is the STATIONS series, with ENEL approved material meeting LV15/LV16 specifications. For list of ENEL compliant and type-approved products, consult dedicated catalogue "STATIONS SERIES – LV15-LV16-LV20".(2) Other values on request.


(3) Optional value.

(4) Optional value. Positive mechanical keying is applied according to the manufacturer's model.

Wiring diagram




RGTO23x

B	Time delay – Switching time setting	RDT.15x	RDT.161		RGTO23x	
	Time setting	Fixed duration	By way of potentiometer, with slotted head screw	By way	By way of potentiometer	
	Full scale times available 0.1s -	0.1 s - 0.2 s - 0.5 s – 1 s	6 s	10 s	30 s	60 s
	Time setting range	-	0.1 - 6 s ⁽¹⁾	310 s	1030 s	3060 s
	Operating accuracy (0,81,1 Un, t=20 °C)	±10 % at high end of scale				
	Accuracy, repeatability	± 2 %				
	Reset	<200ms				

(1) The setting controls are accessible by opening the flap on the cover of the relay.

Electrical life expectancy

RDT_15x, RDT_161				
U	I (A)	L/R (ms)	Operation	
110 Vdc	0.2	40	1,000,000	
110 Vdc	0.5	40	150,000	
110 Vdc	1	10	100,000 (*	
220 Vdc	0.2	10	100,000	
U	I (A)	cosφ	Operation	
110 Vac	1	1	2,000,000	
110 Vac	1	0.5	1,500,000	
110 Vac	5	1	950,000	
110 Vac	5	0.5	500,000	
220 Vac	0.5	1	2,000,000	
220 Vac	1	0,5	800,000	
220 Vac	5	1	600,000	
220 Vac	5	0.5	500,000	
220 Vac	0.5	1	2,000,000	
220 Vac	5	1	500,000	

Switching frequency: 1,200 operations/hour (*) 600 operations/hour

Sockets and retaining clips		RDTE15x, RDTE161			RGTO23x	
Type of installation	Type of outputs	Socket	Clip for RDTE15x	Clip for RDTE15x	Socket	Clip
Wall or DIN H35 rail mounting	Screw	PAVD161	VM1822	VM1823	PAVG161	VM1222
Flush mounting	Double faston (4.8 × 0.8 mm)	-	-	-	PRDG161	VM1222
	Screw	PRVD161	-	-	PRVG161	VM1222
PCB-mount	Solder	PRCD161	-	-	-	-

Mounting tips

The preferred mounting position is on the wall, with the relay positioned horizontally in the reading direction on the nameplate.

For correct use of the relays, they should be spaced apart by at least 5 mm in the horizontal direction and 20 mm in the vertical direction. This is to allow correct upward dissipation of the heat generated by the coil. Set these distances according to the socket used. Distances can be reduced depending on the environmental conditions during operation, and on the relay duty cycle.

No special maintenance is required.

Condensation can form inside the relay when powered up and the outside ambient temperature is cold; this is quite normal and does not affect the operation of the relay. The plastic materials of the relay do not possess hygroscopic properties.

INSTANTANEO MONOSTABLE V FORCIBLY GUID

BISTABL

FAST-ACTING MONOSTABLE ND BISTABLE

> IME DELAY ON PICK-UP 2 DROP-OUT)

SUREMENT

PCB MOUNT

TMM SERIES

USER SECTORS

тмм

PRODUCT ADVANTAGES

- Plug-in relay with time delay, multifunction
- 10 different time delay functions
- 4 time delay contacts or 2 time delay contacts
 + 2 instantaneous contacts
- Wide time setting range from 0.1s to 99 hours, extreme accuracy across the adjustment range
- High electromagnetic interference immunity
- Solid and rugged construction for heavy or intensive duty
- Long life expectancy
- Independent and self-cleaning contacts
- Magnetic arc blow-out standard
- Separate arc breaking chambers
- Excellent shock and vibration resistance
- Wide range of sockets
- Wide variety of configurations and customizations
- Retaining clip for secure locking of relay on socket
- Transparent cover, pull-out handle
- Positive mechanical keying for relay and socket

DESCRIPTION _

The **TMM series** is a range of MULTIFUNCTION relays with electronic time delay, consisting of 2 models with 4 changeover contacts, rated 10 A (nominal). They are obtained by assembling the electromechanical units of the POKS series with a digital electronic circuit. The electromechanical part features the **reliability and ruggedness of relays belonging to the POKS series**, while the electronics offers high reliability thanks to the use of a circuit requiring few components and to the careful choice of professional products.

A single TMM series relay offers **10 different timer functions, freely programmable** by the user; these include, by way of example, time delay on pick-up or on drop-out, flasher, one-shot, etc.

The switching time can be selected within a wide range extending from 0.1 second to 99 hours, with **extreme accuracy** guaranteed across the full scale of adjustment. This is made possible by providing the relay with **10 intermediate** scales.

The timer function, the scale and the switching time are adjustable by means of 4 rotary switches, each having 10 positions, located on the front of the relay.

The electronic circuit is immune to high electromagnetic interference, typical of high voltage electricity distribution stations. The construction of the relays and careful choice of the materials are such that they ensure long life and considerable ruggedness even in harsh operating environments and in the presence of strong temperature fluctuations.

Excellent electrical and mechanical performance levels allow the product to be used in the most demanding of sectors such as, for example, rail transport, control and signalling functions in electricity generating stations, electrical transformer stations, or in industries with continuous production processes (chemical and petroleum industries, rolling mills, cement factories, etc.). Above all, the excellent ability to withstand shock and vibration allow their use on rolling stock.

134 ENERGY

	Nominal current	Number o	of contacts	Polling stock application	SONO
Wodels	Nominal current	Time-delayed	Instantaneous	Rolling stock application	Ψ
TMM2	10 A	2	2	•	
TMM4	10 A	4	-	•	

FOR CONFIGURATION OF PRODUCT CODE, SEE "ORDERING SCHEME" TABLE

φ	Coil specifications		
	Nominal voltages Un (1)	DC: 12-24-36-48-72-110-125-132-144-220 AC: 12-24-48-110-127-220-230	
	Max. consumption at Un (DC/AC)	TMM2: 5.5 W / 7.5 VA TMM4: 4.5 W / 6.5 VA	-
	Operating range ⁽¹⁾	80 ÷ 115 % Un	
	Rolling stock version ^{(2) (3)}	DC: 70 ÷ 125 % Un	_
	Type of duty	Continuous	- 9
	Drop-out voltage ⁽⁴⁾	> 15% Un	ACTIN

(1) Other values on request.

(2) See "Ordering scheme" table for order code.

(3) For operating ranges different to that specified by EN60077, refer to table "Rolling stock versions - Special Ranges".

(4) Limit value for supply voltage, expressed as % of the nominal value, beneath which the relay is certainly de-energized.

Contact specifications	TMM2	TMM4	
Number and type	2 timed + 2 instantaneous CO, form C	4 timed, CO, form C	
Current Nominal ⁽¹⁾ Maximum peak (1 s) ⁽²⁾ Maximum pulse (10 ms) ⁽²⁾	10 A 20 A (1 min) / 40 150 A	A (500 ms)	
Example of electrical life expectancy ⁽³⁾ 1 800 operations/h	0.7 A – 132 Vdc – L/R 40 i 1 A – 110 Vdc – L/R 0 m		
Making capacity	30 A (for 200 ms) – 110 Vdc – L	R 0 ms: 2,000 operations	
Minimum load Standard contacts Gold-plated contact P4GEO ⁽⁴⁾ Gold-plated contact P8 ⁽⁴⁾	500 mW (20 V, 100 mW (10 V 50 mW (5 V,	, 5 mA)	
Maximum breaking voltage	250 Vdc / 35	0 Vac	
Contact material	AgCu		
Operating time at Un (ms) ^{(5) (6)} Pick-up (NO contact closing) Drop-out (NC contact closing)	DC ⁽⁷⁾ – A < 20 - < 2 < 15 - <	20	

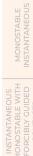
(1) On all contacts simultaneously, reduction of 30%.

(2) The max. peak and pulse currents are those currents that can be handled, for a specified time, by the contact. They do not refer to steady or interrupted currents.

(3) For other values, see electrical life expectancy curves. a) Plating material: P4 GEO: gold-nickel alloy (>6µ)

(4) Specifications of contacts on new relay

P8: gold-cobalt alloy (>5µ), knurled contact


b) When the gold-plated contact is subject to heavy loads, it will be degraded on the surface. In such case, the characteristics of the standard contact should be taken into consideration. This does not impair relay operation.

(5) Times for the instantaneous component of the relay (TMM2 model).

(6) Unless specified otherwise, the operating time signifies until stabilization of the contact (including bounces). They should be added to the preset delay time.

Insulation

insu			
Insu	Ilation resistance (at 500Vdc) between electrically independent circuits and between these circuits and ground between open contact parts	> 1,000 ΜΩ > 1,000 ΜΩ	
With	hstand voltage at industrial frequency between electrically independent circuits and between these circuits and ground between open contact parts between adjacent contacts	2 kV (1 min) - 2.2 kV (1 s) 1 kV (1 min) - 1.1 kV (1 s) 2,5 kV (1 min) - 3 kV (1 s)	
Imp	ulse withstand voltage (1.2/50µs - 0.5J) between electrically independent circuits and between these circuits and ground between open contact parts	5 kV 3 kV	

BACK CONNECTION

⁽⁷⁾ Addition of a flyback diode connected in parallel with the coil (DC version only) causes an increase in operating time when the relay drops out.

Ø	Mechanical specifications					
	Mechanical life expectancy		10 x 10 ⁶			
	Maximum switching rate Mechanical		3,600 operations / h			
	Degree of protection (with relay mounted)		IP40			
	Dimensions (mm) ⁽¹⁾		40 x 50 x 97			
	Weight (g)		~ 220			

(1) Excluding output terminals

Ċ

Environmental specifications		
Operating temperature	Standard	-25 ÷ + 55 ℃
	Rolling stock version	-25 ÷ + 70 °C
Storage and shipping temper	ature	-40 ÷ + 70 °C
Relative humidity		Standard: 75% RH, Tropicalized: 95% RH
Resistance to vibrations		5 g - 10 ÷ 55 Hz - 1 min
Resistance to shock		20 g - 11 ms
Fire behavior		VO

Standards and reference valuesEN 61810-1, EN 61810-2, EN 61810-7Electromechanical elementary relaysEN 61812-1Timer relaysEN 60695-2-10Fire behaviorEN 50082, EN 61000-4Electromagnetic compatibilityEN 60529Degree of protection provided by enclosures

Unless otherwise specified, the products are designed and manufactured according to the requirements of the above-mentioned European and International standards. In accordance with EN 61810-1, all technical data are referred to ambient temperature of 23°C, atmospheric pressure of 96kPa and 50% humidity. Tolerance for coil resistance, nominal electrical input and nominal power is ±7%.

Ra	Railways, rolling stock - Standards				
EI	N 60077	Electric equipment for rolling stock - General service conditions and general rules			
Eľ	N 50155	Electronic equipment used on rolling stock			
Eľ	N 61373	Shock and vibration tests, Cat 1 Class B			
Eľ	N 45545-2	Fire behavior, Cat E10, Requirement R26, V0			
A	STM E162, E662	Fire behavior			

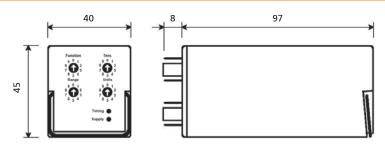
Ŕ	Railways, rolling stock – Special operating ranges ⁽¹⁾							
	Nominal voltage	Minimum pick-up voltage	Maximum operating voltage	Order symbol (1)				
	24 Vdc	16.8	32	Z01				
	72 Vdc	55	104	Z01				
	110 Vdc	77	144	Z01				

(1) To request the special range, indicate the "Z0x" symbol in the "Keying position" field in the "Ordering scheme" table. The special range may be subject to operating specifications different from standard specifications. Please contact us for further information.

Tropicalization of coil with epoxy resin for exposure to 95% RH (@ T 50 °C). This treatment also protects the coil against corrosion which could occur by combination of the humidity with certain chemical agents, such as those found in acidic or saline atmospheres.
Gold plating of contacts with gold-nickel alloy, thickness $\geq 6\mu$. This treatment ensures long-term capacity of the contact to conduct lower currents in harsh ambient conditions such as acid atmospheres (typical of geothermal power stations) or saline atmospheres.
Gold-plating of contacts P4GEO + tropicalization of coil P2.
P4GEO type gold-plating, but applied to contacts, contact terminals and output terminals + P2 coil tropicalization.
AgCdO (silver cadmium oxide) contacts.
Gold plating of contacts with gold-cobalt alloy, thickness $\geq 5\mu$, knurled fixed contact. This finish allows further improvement of the gold-plated contact performance compared to the treatment P4GEO.
Polarized component connected in parallel with the coil (type 1N4007 or BYW56 for rolling stock version) designed to suppress overvoltages generated by the coil when de-energized.
Non-polarized component connected in parallel with the coil. Behavior is similar to that of a varistor, with faster operating times.

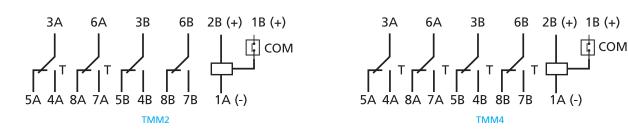
Product code TMM2 TMM4	Application ⁽¹⁾ E: Energy Railway Fixed Equipment R: Railway Rolling	Configuration A 1: Standard 2: Diode // 3: Varistor 7: Transil	Configuration B 0: Standard 2: P2 4: P4 GEO 5: P5 GEO 6: P6 GEO 7: P7	Label F	Type of power supply C: Vdc A: Vac 50 Hz	Nominal voltage (V) ⁽²⁾ 012 - 024 - 036 048 - 072 - 100 110 - 125 - 127 132 - 144 - 220 230	Keying position ⁽³⁾ XXX
TMM2	Stock	1	8: P8	F	с	024	
TMM4	MM2E18F-C024 - T	MM2 relay, ENERG	Y series, nominal v	voltage	24 Vdc, with P8 fi	nish (gold-plated co	ntacts)
			0	F	С	110	

(1) E = ENERGY: all applications, except for railways rolling stock.


Suitable on energy production, transport and distribution plants, railways fixed equipment, petrolchemical and heavy industry. R = RAILWAYS, ROLLING STOCK: Application on board rolling stock (rail-tram-trolley vehicles). Electrical characteristics according to EN60077.

Availables also the product series:

RAILWAYS, FIXED EQUIPMENT: Approved and conforming relays and products to RFI (FS Group) specification no. RFI DPRIM STF IFS TE 143 A For the list of RFI approved and conforming products, consult dedicated catalog "RAILWAY SERIES – RFI APPROVED". STATIONS: ENEL approved material meeting LV15/LV16 specifications.


For the list of ENEL approved and conforming products, consult the dedicated catalog "STATIONS SERIES - LV15-LV16-LV20". (2) Other values on request.

(3) Optional value. The positive mechanical keying is applied according to the manufacturer's model.

Timing = Green Led: time delay activated Supply = Red Led: auxiliary power on

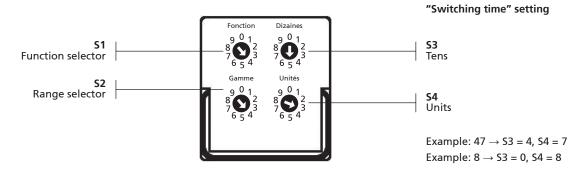
Wiring diagram

T= time delay contacts

Terminals 2B and 1A are allocated to the auxiliary power supply.

Terminal 1B is allocated to CONTROL. The negative of the control circuit is common with that of the auxiliary power supply. Certain functions require an auxiliary power supply to guarantee operation of the time delay (terminal 2B).

BACK


137

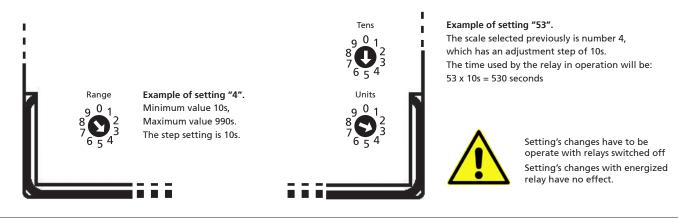
Time delay – Switching time setting	
Controls setting function, range and time	4 rotary switches with 10 positions (09)
Time setting range	100 ms99 h
Intermediate scales	10, from 9.9 seconds to 99 hours
Resolution of switching time setting	1% of intermediate scale
Accuracy, time delay (0.81.1 Un, t=20°C)	DC : \pm 1% of selected time or \pm 5 ms ⁽¹⁾ AC : \pm 1% of selected time; 0,1s10s: \pm 2% \pm 20ms
Accuracy, repeatability	DC: ± 0.5 % AC: ± 0.5 % + 20 ms
Reset	< 200 ms during time delay interval < 400ms

(1) Whichever of the two values is higher.

The function and switching time are adjustable by means of 4 rotary-switch selectors located on the front of the relay, each having 10 positions, with which the user can select time delay settings between 100 ms and 99 hours.

The position of the arrow point on each rotary switch indicates the number selected. Adjustments are made by discrete steps, which means that no intermediate settings are possible.

Adjustment of switching time (except for function F6)


To adjust the switching time, the first step is to adjust the intermediate scale T(s), by selecting one of the 10 available scales using the S2 rotary switch. The values available are given in table 1.

Scale	Minimum value	Maximum value	Step	Scale	Minimum value	Maximum value	Step
0	0.1 s	9.9 s	100 ms	5	1 min	99 min	1 min
1	1 s	99 s	1 s	6	3 min	297 min	3 min
2	3 s	297 s	3 s	7	5 min	495 min	5 min
3	5 s	495 s	5 s	8	10 min	990 min	10 min
4	10 s	990 s	10 s	9	1 h	99 h	1 h

Table 1 – Available scales

Next, the switching time is adjusted by means of rotary-switch selectors S3 and S4.

The combination of these two 10-position controls, located on the right, allows the selection of a number between 1 and 99. The number selected with the "Tens" arrow combined with the number selected with the "Units" arrow represents the multiplier of the step selected via the "Range" control. The resulting value gives the time used by the relay in operation.

Function F6 pilots an asymmetric flash. The "ON" time and the "OFF" time are adjustable independently "ON" time (t) \rightarrow selector S3

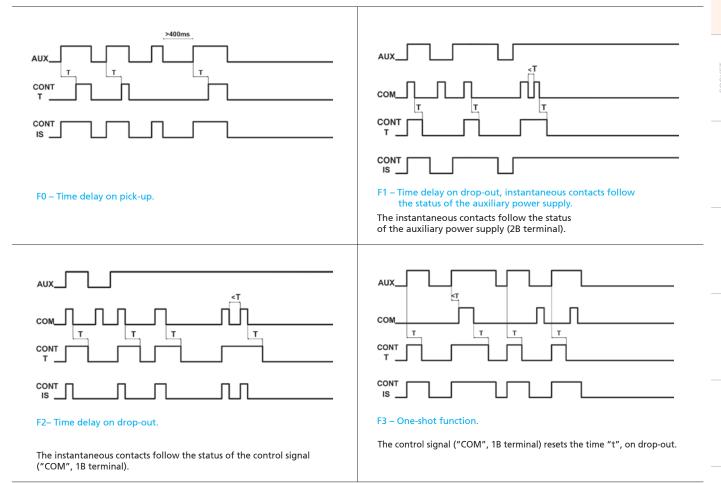
"OFF" time (T) \rightarrow selector S4

In this instance, selector S3 and selector S4 are both calibrated in UNITS. Position "0" assumes the value of 10 integers.

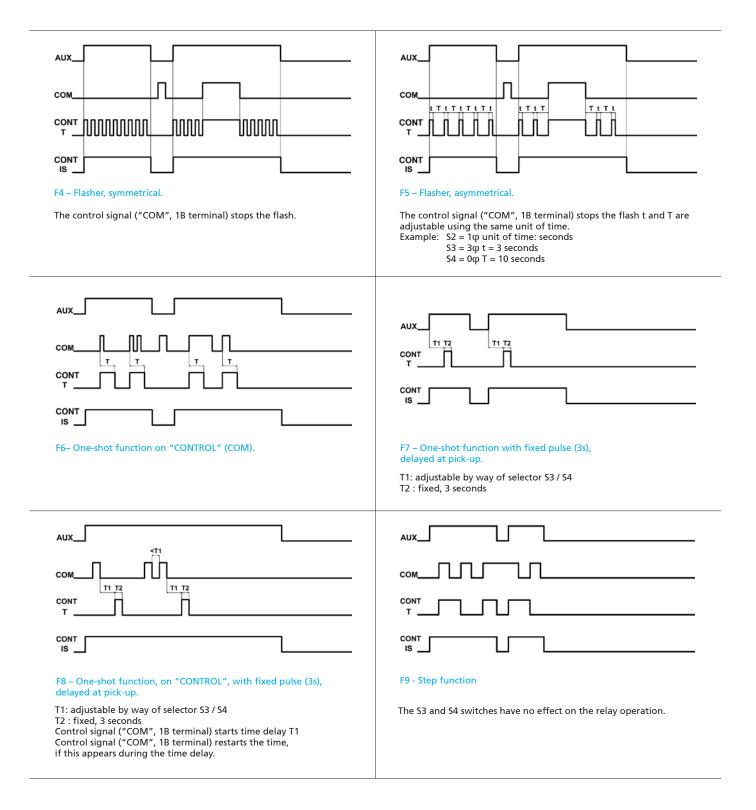
Once the scale has been set by means of selector S2, selectors S3 and S4 are used to set the number that will provide the multiplier for the step of the selected scale.

Example: $S2 = 1 \rightarrow$ unit of time : seconds

 $S3=3 \rightarrow t=3 \text{ seconds}$


 $S4 = 0 \rightarrow T = 10$ seconds

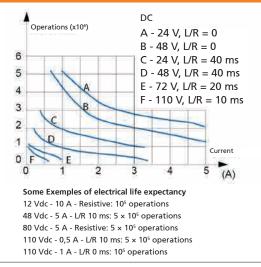
Functions - selections and operating diagrams


SELECTING THE FUNCTION

The function is selected by positioning the arrow of selector S1 so that the point is aligned with the number of the required function.

Function	Description
F0	Time delay on pick-up.
F1	Time delay on drop-out. Instantaneous contacts follow the status of the auxiliary power supply.
F2	Time delay on drop-out, instantaneous contacts on "CONTROL". Instantaneous contacts follow the status of the control signal.
F3	One-shot function.
F4	Flasher, symmetrical. The "ON" time and the "OFF" time are the same.
F5	Flasher, asymmetrical. The "ON" time and the "OFF" time are different, and adjustable independently.
F6	One-shot function on "CONTROL". The timing cycle starts on activation of the control signal.
F7	One-shot function with fixed pulse (3s), delayed at pick-up. Pulse delay adjustable.
F8	One-shot function, on "CONTROL", with fixed pulse (3s), delayed at pick-up. The timing cycle starts on activation of the control signal. Pulse delay adjustable.
F9	Step function

FRONT



Applicable note for all operatings diagrams:

AUX: 2B - 1A terminals COM: 1B terminal CONT T: timed contacts CONT I: instantaneous contacts

See "Wiring diagram" to identify the instantaneous and timed contacts terminals'.

(1) Switching frequency 1,200 operations/hour, 50% cycle.

Sockets and retaining clips		
Number of terminals (standard dimensions 5x0.8mm)	16	Retaining clip
For wall or rail mounting		
Spring clamp, wall or DIN H35 rail mounting	PAIR160	RT48
Screw, wall or DIN H35 rail mounting	48BIP20-I DIN	RT48
Screw, wall mounting	48BL	RT48
For flush mounting		
Spring clamp	PRIR160	RT48
Double faston (4.8 × 0.8 mm)	ADF2	RT48
Screw	43IL ⁽¹⁾	RT43
For mounting on PCB	65	RT43

(1) Insert the clip before fastening the socket on the panel.

For more details, see specifications of mounting accessories.

Mounting tips

The preferred mounting position is on the wall, with the relay positioned horizontally in the reading direction on the nameplate. For correct use of the relays, they should be spaced apart by at least 5 mm in the horizontal direction and 20 mm in the vertical direction. This is to allow correct upward dissipation of the heat generated by the coil. Set these distances according to the socket used. Distances

can be reduced depending on the environmental application conditions and on the relay duty cycle.

For safe and secure operation, it is advisable to use retaining clips.

No special maintenance is required.

Condensation can form inside the relay when powered up and the outside ambient temperature is cold; this is quite normal and does not affect the operation of the relay. The plastic materials of the relay do not possess hygroscopic properties.

141

TM SERIES

USER SECTORS

PRODUCT ADVANTAGES

- Plug-in relay with time delay on pick-up or on drop-out
- 4 time delay contacts or 2 time delay contacts
 + 2 instantaneous contacts
- Wide time setting range from 0.1s to 9 hours, great accuracy over the entire adjustment range
- High electromagnetic interference immunity
- Solid and rugged construction for heavy or intensive duty
- Long life expectancy
- Independent and self-cleaning contacts
- Magnetic arc blow-out standard
- Separate arc breaking chambers
- Excellent shock and vibration resistance
- Wide variety of configurations and customizations
- Option for use in geothermal sites available
- Wide range of sockets
- Retaining clip for secure locking of relay on socket
- Transparent cover, pull-out handle
- Positive mechanical keying for relay and socket

DESCRIPTION

The TM series is a range of relays with eletronic time delay on pick-up or drop-out, consisting of 8 models with 4 change-over contacts, from 5 to 10 A (nominal). They are obtained by assembling the electromechanical units of the POK or BIPOK series with a digital electronic circuit.

The electromechanical part features the **reliability and ruggedness** of relays belonging to the POK series, while the electronics offers high reliability thanks to the use of an electronic circuit requiring few components and to the careful choice of professional products.

With the same product it is possible to obtain switching **times ranging** from **0.1 second to over 9 hours**, with the greatest of accuracy over the entire setting range. This is thanks to the fact that the relay has 16 intermediate scales, freely selectable by the user.

Switching time is adjustable by means of two dipswitches, 4- and 8-bit respectively, located on the front of the relay. The 4-bit dipswitch serves for selecting the most suitable intermediate scale, while the 8-bit dipswitch is used for precision selection of the switching time.

On request, the models are available with fixed switching time to avoid modifications to the time setting.

The electronic circuit is immune to high electromagnetic interference, typical of high voltage electricity distribution stations.

The construction of the relays and careful choice of the materials are such that they ensure **long life** and considerable **ruggedness** even in harsh operating environments and in the presence of strong temperature fluctuations.

Excellent electrical and mechanical performance levels allow the product to be used in the most demanding of sectors such as, for example, control and signalling functions in electricity generating stations, electrical transformer stations, rail transport or in industries with continuous production processes (chemical industry, petroleum industry, rolling mills, cement factories, etc.). A specific treatment (P5GEO or P6GEO) combining coil tropicalization with gold-plated contacts allows the use of these items in geothermal electric power stations, as relays for signalling functions, for controlling intermediate devices and for all non-power circuits.

Above all, the excellent ability to withstand shock and vibration allow their use on rolling stock.

Nodels	Fun	ction	Nomina	l current	Number o	of contacts	Rolling stock application
	Pick-up	Drop-out	5 A	10 A	Time-delayed	Instantaneous	
TM2E	٠		٠		2	2	•
TM4E	•		٠		4	-	•
TMS2E	٠			•	2	2	•
TMS4E	•			•	4	-	٠
TM2R		•	٠		2	2	٠
TM4R		•	•		4	-	•
TMS2R		•		•	2	2	٠
TMS4R		•		•	4	-	٠

FOR CONFIGURATION OF PRODUCT CODE, SEE "ORDERING SCHEME" TABLE

Coil specifications

DC: 12-24-36-48-72-96-110-125-132-144-220 AC: 12-24-48-110-127-220-230
4 W / 5 VA
80115% Un
DC: 70125% Un
Continuous
DC: > 5% Un AC: > 15% Un

1. Other values on request. - 2. See "Ordering scheme" table for order code. - 3. For operating ranges different to that specified by EN60077, refer to table "Rolling stock versions - Special Ranges". - 4. Limit value for supply voltage, expressed as % of the nominal value, beneath which the relay is certainly de-energized.

TM2E - TM2R	TM4E - TM4R	TMS2E - TMS2R	TMS4E - TMS4R	DED
2 + 2 instantaneous CO, form C	4 CO, form C	2 + 2 instantaneous CO, form C	4 CO, form C	E DELAY V CIBLY GUI
5 A		10 A		TIME DE FORCIBL CON
10	A	20	A	
100	Α	150	D A	1ENT
0.2 A – 110 Vdc – L/R =	40 ms: 10⁵ operations	0.5 A – 110 Vdc – L/R = 40 ms: 10 ⁵ operations 1 A – 110 Vdc – L/R = 0 ms: 10 ⁵ operations		JR EN
0.7 A – 110 Vdc – L/R =	= 0 ms: 10 ⁵ operations			MEASUREMENT
500 mW (20 V, 20 mA)				
100 mW (10 V, 5 mA)				
50 mW (5 V, 5 mA)				
250 Vdc / 350 Vac				OCKE ABER ANAT
Ag	Cu	Ag / AgCu		NUN SC
DC ⁽⁷⁾ – AC				
	≤ 20 ·	- ≤ 20		7
≤ 15 - ≤ 20				L
	2 + 2 instantaneous CO, form C 5 10 100 0.2 A - 110 Vdc - L/R = 0.7 A - 110 Vdc - L/R =	$\begin{array}{c c} 2 + 2 \text{ instantaneous} \\ CO, \text{ form C} \end{array} & 4 \text{ CO, form C} \end{array} \\ \hline & 5 \text{ A} \\ 10 \text{ A} \\ 100 \text{ A} \end{array} \\ \hline & 0.2 \text{ A} - 110 \text{ Vdc} - L/\text{R} = 40 \text{ ms: } 10^5 \text{ operations} \\ 0.7 \text{ A} - 110 \text{ Vdc} - L/\text{R} = 0 \text{ ms: } 10^5 \text{ operations} \end{array} \\ \hline & 500 \text{ mW (2)} \\ 100 \text{ mW (7)} \\ 500 \text{ mW (5)} \\ 250 \text{ Vdc} \end{array} \\ \hline & 250 \text{ Vdc} \\ \hline & 4\text{ gCu} \end{array}$	$\begin{array}{c c c c c c c c } 2+2 \mbox{ instantaneous} & 4 \mbox{ CO, form C} & 2+2 \mbox{ instantaneous} & CO, form C & CO, form$	$\begin{array}{c c c c c c } 2 + 2 \text{ instantaneous} & 4 \text{ CO, form C} & 2 + 2 \text{ instantaneous} & 4 \text{ CO, form C} & 6 \text{ CO, form C} & $

1. On all contacts simultaneously, reduction of 30%.

2. The max. peak and pulse currents are those currents that can be handled, for a specified time, by the contact. They do not refer to steady or interrupted currents.

3. For other values, see electrical life expectancy curves.

4. Specifications of contacts on new relay

a. Plating material: P4 GEO : gold-nickel alloy (>6µ) P8: gold-cobalt alloy (>5µ), knurled contact

b. When the gold-plated contact is subject to heavy loads, it will be degraded on the surface. In such case, the characteristics of the standard contact should be taken into consideration.

This does not impair relay operation.

5. Times for the instanteous component of the relay.

6. Unless specified otherwise, the operating time signifies until stabilization of the contact (including bounces). It should be added to the preset delay time.

7. Addition of a flyback diode connected in parallel with the coil (DC version only) causes an increase in operating time when the relay drops out.

4	Insulation	
	Insulation resistance (at 500Vdc)	
	between electrically independent circuits and between these circuits and ground	> 1,000 MΩ
	between open contact parts	> 1,000 MΩ
	Withstand voltage at industrial frequency	
	between electrically independent circuits and between these circuits and ground	2 kV (1 min) - 2.2 kV (1 s)
	between open contact parts	1 kV (1 min) - 1.1 kV (1 s)
	between adjacent contacts	2.5 kV (1 min) - 3 kV (1 s)
	Withstand voltage at industrial frequency (1.2/50µs – 0.5J)	
	between electrically independent circuits and between these circuits and ground	5 kV
	between open contact parts	3 kV

143

FRONT CONNECTION

TIME DELAY (ON PICK-UP OR DROP-OUT)

PCB MOUNT

Mechanical specifications

weethanical specifications		
	Mechanical life	DC: 20 x 10 ⁶ AC: 10 x 10 ⁶ operations
Maximum switching rate	Mechanical life expectancy	3,600 operations / hour
Degree	of protection (with relay mounted)	IP40
	Dimensions (mm) ⁽¹⁾	40 x 50 x 97
	Masse (g)	~ 220

(1) Excluding output terminals

C

J	Environmental specifications					
	Operating temperature Standard	-25° to +55°C				
	Version for railway, rolling stock	-25° to +70°C				
	Storage and shipping temperature	-40° to +85°C				
	Relative humidity	Standard: 75% RH Tropicalized: 95% RH				
	Resistance to vibrations	5g - 10 to 55 Hz - 1 min				
	Resistance to shock	20g – 11 ms				
	Fire behavior	VO				

Standards and reference values

EN 61810-1, EN 61810-2, EN 61810-7	Electromechanical elementary relays
EN 61812-1	Timer relays
EN 60695-2-10	Fire behavior
EN 61000	Electromagnetic compatibility
EN 60529	Degree of protection provided by enclosures

Unless otherwise specified, the products are designed and manufactured according to the requirements of the above-mentioned European and International standards. In accordance with EN 61810-1, all items of technical data are referred to ambient temperature 23 °C, atmospheric pressure 96kPa and 50% humidity. Tolerance for coil resistance, nominal electrical input and nominal power is ±7%.

Railways, rolling stock - Standards				
EN 60077	Electric equipment for rolling stock. General service conditions and general rules			
EN 50155	Electronic equipment used on rolling stock			
EN 61373	Rolling stock equipment. Shock and vibration tests, Cat 1 Class B			
EN 45545-2	Fire behavior, Cat E10, Requirement R26, V0			
ASTM E162, E662	Fire behavior			
CU TR 001/2011	Safety of railway rolling stock - EAC certification			

Â	Railways, rolling stock – Special operating ranges ⁽¹⁾					
	Nominal voltage	Minimum pick-up voltage	Maximum operating voltage	Order symbol (1)		
	24 Vdc	18	33	Z01		
	24 Vdc	16	32	Z02		
	24 Vdc	16.8	32	Z03		
	72 Vdc	55	104	Z01		
	110 Vdc	77	144	Z01		

(1) To request the special range, indicate the "Z0x" symbol in the "Keying position" field in the "Ordering scheme" table. The special range may be subject to operating specifications different from standard specifications. Please contact us for further information.

Configurations - Option	5
P2	Tropicalization of the coil with epoxy resin for use with 95% RH (@ T 50 °C). This treatment also protects the coil against corrosion which could occur by combination of the humidity with certain chemical agents, such as those found in acid atmospheres (typical of geothermal power stations) or saline atmospheres.
P4GEO	Gold plating of contacts with gold-nickel alloy, thickness ≥ 6µ. This treatment ensures long-term capacity of the contact to conduct lower currents in harsh ambient conditions such as acid atmospheres (typical of geothermal power stations) or saline atmospheres.
P5GEO	P4GEO gold-plating of contacts + P2 coil tropicalization.
P6GEO	P4GEO type gold-plating, but applied to contacts, contact terminals and output terminals + P2 coil tropicalization.
P7	AgCdO (silver cadmium oxide) contacts.
P8	Gold plating of contacts with gold-cobalt alloy, thickness $\geq 5\mu$, knurled fixed contact. This finish allows further improvement of the gold-plated contact performance compared to the treatment P4GEO.
LED	LED indicator showing presence of power supply, wired in parallel with the coil
FLYBACK DIODE	Polarized component connected in parallel with the coil (type 1N4007 or BYW56 for rolling stock version) designed to suppress overvoltages generated by the coil when de-energized.
TRANSIL	Non-polarized component connected in parallel with the coil. Behavior is similar to that of a varistor, with faster operating times.
LOW TEMPERATURE	Minimum operating temperature -50 °C, only for rolling stock version (option "L").

TM Ordering schem

	Juering s	liene		1	1			
	roduct code	Application ⁽¹⁾	Configuration A	Configuration B	Label	Type of power supply	Nominal voltage (V) ⁽²⁾	Keying position ⁽³⁾ / options
TM2I TM4I TM52 TM54 TM2I TM4I TM52 TM54	E 2E 4E R R 2R	E: Energy Railway Fixed Equipment R: Railway Rolling Stock	1: Standard 2: Diode // 3: Varistor 4: Led 5: Diode // + Led 6: Varistor + Led 7: Transil 8: Transil + Led	0 : Standard 2: P2 4: P4 GEO 5: P5 GEO 6: P6 GEO 7: P7 8: P8	F	C: Vdc A: Vac 50 Hz H: Vac 60 Hz	012 - 024 - 036 048 - 072 - 096 100 - 110 - 125 127 - 132 - 144 220 - 230	XXX L = low temperature
а)	TMS2R	E	4	2	F	А	230	
Jple	TMS2R	E42F-A230 - TMS	2R relay, ENERGY se	eries, nominal v	oltage 2	30 Vac, provided w	ith LED, with P2 fin	sh (tropicalized coil)

Exam

F TM4RR18F-C024 - TM4R relay, ROLLING STOCK series, nominal voltage 24 Vdc, with P8 finish (gold-plated contacts) and option "L" (low temp.)

С

024

(1) E = ENERGY: all applications, except for railways rolling stock.

R

Suitable on energy production, transport and distribution plants, railways fixed equipment, petrolchemical and heavy industry.

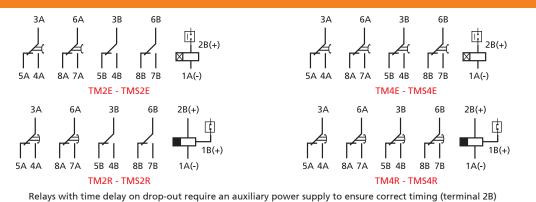
R = RAILWAYS, ROLLING STOCK: Application on board rolling stock (rail-tram-trolley vehicles). Electrical characteristics according to EN60077.

RAILWAYS, FIXED EQUIPMENT: Approved and conforming relays and products to RFI (FS Group) specification no. RFI DPRIM STF IFS TE 143 A

8

For the list of RFI approved and conforming products, consult dedicated catalog "RAILWAY SERIES - RFI APPROVED". STATIONS: ENEL approved material meeting LV15/LV16 specifications.

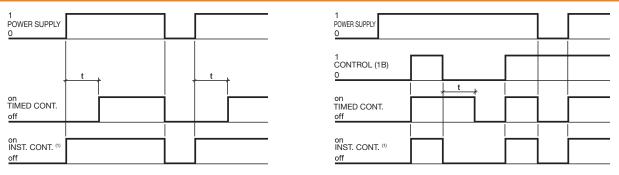
For the list of ENEL approved and conforming products, consult the dedicated catalog "STATIONS SERIES - LV15-LV16-LV20".


(2) Other values on request.

TM4R

(3) Optional value. The positive mechanical keying is applied according to the manufacturer's model.

1


Wiring diagram

L

Availables also the product series:

Time-delay on pick-up (version 2E, 4E)

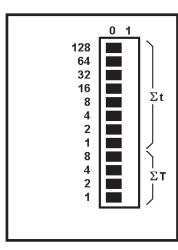
Time-delay on drop-out (version 2R, 4R)

 $^{\mbox{(1)}}$ Instantaneous contacts are present only on versions "2E" and "2R"

Time delay – Switching time setting			
Time setting	By means of DIP switches		
Time setting range	100 ms32,768 s		
Intermediate scale	16, from 1 second to 32,768 seconds		
Resolution of switching time setting	1/256 of the selected scale		
Accuracy, time-delay ⁽¹⁾	\pm 1% of the switching time \pm 0.5% of the scale		
Accuracy, repeatability	DC : ± 0.5% AC : ± 0.5% + 20 ms		
Reset	< 100ms in time-delay phase < 400ms		
Insensitivity to voltage drops	< 100 ms		

(1) Additional error for drop-out versions: 100 ms

The switching time is adjustable via the dipswitches (4- and 8-bit respectively) located on the front of the relay, through which it is possible to obtain time delays from 100 ms to 32,768 seconds (about 9 hours).

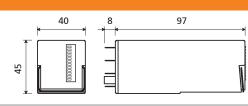

To adjust the switching time, the first step is to adjust the intermediate scale T(s), by selecting one of the 16 available scales using the 4-bit dipswitch. The values available are given in table 1.

The value of the T(s) scale should be the next highest numerically than the value of the required switching time.

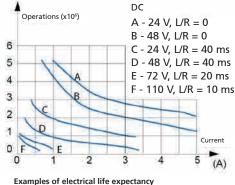
E.g. Switching time: 3600 seconds \rightarrow intermediate scale to set: 4096 seconds

The T(s) scale is set by identifying the switches that add up to the Σ T value indicated in table 1, and positioning them at "1".

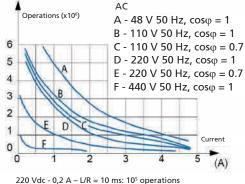
Next, proceed to set the switching time by means of the 8-bit dipswitch.


			Switch r	eference	
T(s)	ΣΤ	8	4	2	1
			Switch	position	
1	0	0	0	0	0
2	1	0	0	0	1
4	2	0	0	1	0
8	3	0	0	1	1
16	4	0	1	0	0
32	5	0	1	0	1
64	6	0	1	1	0
128	7	0	1	1	1
256	8	1	0	0	0
512	9	1	0	0	1
1 024	10	1	0	1	0
2 048	11	1	0	1	1
4 096	12	1	1	0	0
8 192	13	1	1	0	1
16 384	14	1	1	1	0
32 768	15	1	1	1	1
		Tab	le 1		

The switching time is set by identifying the 16-bit dipswitches that add up to the Σ t value, as calculated below, and positioning them at "1":


 $\Sigma t = \frac{t \times 256}{T}$ where t(s) : required switching time T(s) : full scale time set previously

Example: Relay with time delay 22sec. and full scale time 32sec.


For the full scale time of 32 s, select value 5 in the Σ T column (see table), then identify the switches corresponding to 4 and 1 (4+1=5) and position them at "1". For the delay time of 22 s, set an Σ t value of 176 (i.e. 22x256/32), then identify the switches corresponding to 128, 32 and 16 (128+32+16=176) and position them at "1".

Electrical life expectancy (1)

48 Vdc - 5 A – L/R 10 ms: 5 x 10⁵ operations 80 Vdc - 5 A – Resistive: 5 x 10⁵ operations 110 Vdc - 0.5 A – L/R = 10 ms: 5 x 10^5 operations

110 Vac - 5 A – Cos ϕ = 0.7: 5 x 10⁵ operations 220 Vac - 3 A – Cos ϕ = 0.7: 5 x 10 $^{\scriptscriptstyle 5}$ operations 440 Vac - 0,2 A - Resistive: 5 x 10⁵ operations

(1) Switching frequency 1200 operations/hour, cycle 50%.

Sockets		AY WI
Number of terminals	16	DEL
For wall or rail mounting		
Spring clamp, wall or DIN H35 rail mounting	PAIR160	
Screw, wall or DIN H35 rail mounting	48BIP20-I DIN	
Screw, wall mounting	48BL	
Double faston, wall mounting	48L	
For flush mounting		
Double faston (4.8 × 0.8 mm)	ADF2	
Screw	43IL	
For mounting on PCB		Socket
	65	0

For more details, see specifications of mounting accessories.

Retaining clips – correspondence with sockets		ZO
Number of clips per relay	1, 2 for use on rolling stock	FRONT CONNECTION
SOCKET MODEL	CLIP MODEL	ONN N
For wall or rail mounting		0
PAIR160, 48BIP20-I DIN, 48BL, 48L	RT48	
For flush mounting		NOL
ADF2	RT48	BACK CONNECTION
43IL ⁽¹⁾	RT43	CONE
For mounting on PCB		
65	RT43	

(1) Insert the clip before fastening the socket on the panel.

Mounting tips

The preferred mounting position is on the wall, with the relay positioned horizontally in the reading direction on the nameplate. For correct use of the relays, they should be spaced apart by at least 5 mm in the horizontal direction and 20 mm in the vertical direction. This is to allow correct upward dissipation of the heat generated by the coil. Set these distances according to the socket used. Distances can be reduced depending on the environmental application conditions and on the relay duty cycle.

For safe and secure operation, it is advisable to use retaining clips. No special maintenance is required.

Condensation can form inside the relay when powered up and the outside ambient temperature is cold; this is quite normal and does not affect the operation of the relay. The plastic materials of the relay do not possess hygroscopic properties.

147

USER SECTORS

ток

PRODUCT ADVANTAGES

- TOK: Relay with time delay on pick-up or on drop-out
- Wide range of time settings available
- Solid and rugged construction for heavy or intensive duty
- Very long electrical life expectancy and exceptional endurance
- Independent and self-cleaning contacts with high breaking capacity
- Patent operating mechanism, designed to ensure high contact pressure
- Magnetic arc blow-out for higher breaking capacity
- Excellent shock and vibration resistance
- Wide range of sockets
- Retaining clip for secure locking of relay on socket
- Transparent cover, pull-out handle
- Positive mechanical keying for relay and socket

DESCRIPTION .

The relays in the **TOK** series are monostable types with time delay, using 4 CO contacts. Manufactured following the same basic electromechanical design of the OK Series, they embody all the features and benefits of this product. These models are suitable for use in the most demanding of sectors such as, for example, electricity generating stations, electrical transformer stations, industries using continuous production processes, and railways - fixed equipment and rolling stock alike. An ample clearance between open contact elements is instrumental in ensuring optimum performance when breaking high loads. The use of a magnetic arc blow-out helps to achieve a considerable increase in breaking capacity, even when handling highly inductive loads.

TOK Series

The TOKe and TOKr relays provide time delays on **pick-up and drop-out respectively**, using 4 CO contacts. Intended originally for use in nuclear power plants, these relays are designed to guarantee particularly **high reliability and superior strength**. The time interval is adjusted by way of a potentiometer with a flat-head slotted screw, accessed from the top of the cover. A LED indicates energized status of the coil.

For further details of electromechanical construction, see chapter 1.2 "OK series".

Models	Func	tion	Number of contacts	Magnetic arc blow-out	Adjustable	Fixed time delay, capacitor controlled	Rolling stock application
	Pick-up	Drop-out			Time delay		
TOKe	•		4	•	•		•
TOKr		•	4	•	•		•

FOR CONFIGURATION OF PRODUCT CODE, SEE "ORDERING SCHEME" TABLE

Coil specifications		TOKe - TOKr	
	Nominal voltages Un (1)	DC: 24-36-48-72-110-125-132-144-220 AC: 24-48-110-125-220-230	
	Max. consumption at Un	4 W / VA	
Operating range	standard	80115% Un	
	Rolling stock version (1) (2)	DC: 70125% Un	
	Type of duty	Continuous	
	Drop-out voltage (3)	> 5% Un	

(1) Other values on request.

(2) See "Ordering scheme" table for order code.

(3) Limit value for supply voltage, expressed as % of the nominal value, beneath which the relay is certainly de-energized.

Contact specifications	TOKe - TOKr	²
Number and type	4 CO, form C	7
Current Nominal (1)	10 A	TIM
Maximum pulse (1 s) (2)	20 A	
Maximum pulse (10 ms) ⁽²⁾	150 A	
Example of electrical life expectancy (³) 1,800 operations / h	$0,7 \text{ A} - 132 \text{ Vdc} - L/R = 40 \text{ ms}: 10^5 \text{ operations}$	F
Minimum load Standard contacts	500 mW (20 V, 20 mA)	
Gold-plated contacts P4GEO (4)	100 mW (10 V, 5 mA)	
Maximum breaking voltage	350 Vdc / 440 Vac	
Contact material	AgCu	
Operating time at Un (ms) ⁽⁵⁾		
Pick-up (NO contact closing)	≤ 38	
Drop-out (NC contact closing)	DC: ≤ 8 AC: ≤ 80	

(1) Nominal current: on all contacts simultaneously.

(2) The max. peak and pulse currents are those currents that can be handled, for a specified time, by the contact. They do not refer to steady or interrupted currents.

(3) For other values, see electrical life expectancy curves.

(4) Specifications of gold-plated contacts on new relay

a) Plating material: P4GEO : gold-nickel alloy (>6µ).

b) When the gold-plated contact is subject to heavy loads, it will be degraded on the surface. In such case, the characteristics of the standard contact should be taken into consideration. This does not impair relay operation.

(5) Unless specified otherwise, the operating time signifies until stabilization of the contact (including bounces). It should be added to the preset delay time.

(6) e(t) = DC < 15% / AC < 20% of selected time delay.

Insulation		BACK
Insulation resistance (at 500Vdc)		0
between electrically independent circuits and between these circuits and ground	> 1,000 MΩ	
between open contact parts	> 1,000 MΩ	F
Withstand voltage at industrial frequency		LNUOM
between electrically independent circuits and between these circuits and ground	2 kV (1 min) - 2.2 kV (1 s)	- E D D
between open contact parts	2 kV (1 min) - 2.2 kV (1 s)	ā.
between adjacent contacts	2 kV (1 min) - 2.2 kV (1 s)	
Impulse withstand voltage (1.2/50µs - 0.5J)		DS
between electrically independent circuits and between these circuits and ground	5 kV	C C
between open contact parts	5 kV	NIX N

149

FRONT CONNECTION

Q	Mechanical specifications			
		Mechanical life expectancy	20x10 ⁶ operations	
	Maximum switching rate	Mechanical	3,600 operations/hour	
	Degree o	f protection (with relay mounted)	IP20	
		Dimensions (mm)	45x45x109 ⁽¹⁾	
		Weight (g)	~ 330	

(1) Excluding output terminals

Environmental specifications				
Operating temperature	-10 to + 55 °C			
Rolling stock version	-25 to + 70 °C			
Storage and shipping temperature	-25 to + 85 °C			
Relative humidity	Standard: 75% RH, Tropicalized: 95% RH			
Resistance to vibrations	5g - 10 to 60 Hz - 1 min.			
Resistance to shock	30g - 11ms			
Fire behavior	VO			

ā	Standards and reference values	
	EN 61810-1, EN 61810-2, EN 61810-7	Electromechanical elementary relays
	EN 61812-1	Timer relays
	EN 60695-2-10	Fire behavior
	EN 61000	Electromagnetic compatibility
	EN 60529	Degree of protection provided by enclosures

Unless otherwise specified, the products are designed and manufactured according to the requirements of the above-mentioned European and International standards. In accordance with EN 61810-1, all items of technical data are referred to ambient temperature 23 °C, atmospheric pressure 96kPa and 50% humidity. Tolerance for coil resistance, nominal electrical input and nominal power is ±7%.

Railways, rolling stock - Stand	Railways, rolling stock - Standards					
EN 60077	Electric equipment for rolling stock - General service conditions and general rules					
EN 50155	Electronic equipment used on rolling stock					
EN 61373	Shock and vibration tests, Cat 1, Class B					
EN 45545-2	Fire behavior, Cat E10, Requirement R26, V0					
ASTM E162, E662	Fire behavior					

Configurations - Options	
P2	Tropicalization of coil with epoxy resin for use with 95% RH (@ T 50 °C). This treatment also protects the coil against corrosion which could occur by combination of the humidity with certain chemical agents, such as those found in acid atmospheres (typical of geothermal power stations) or saline atmospheres.
P4GEO	Gold plating of contacts with gold-nickel alloy, thickness $\ge 6\mu$. This treatment ensures long-term capacity of the contact to conduct lower currents in harsh ambient conditions such as acid atmospheres (typical of geothermal power stations) or saline atmospheres.
P5GEO	P4GEO gold-plating of contacts + P2 coil tropicalization.
P6GEO	P4GEO type gold-plating, but applied to contacts, contact terminals and output terminals + P2 coil tropicalization.
LED	LED indicator showing presence of power supply, wired in parallel with the coil.

OKx Ordering	scheme							
Product code	Application ⁽¹⁾	Configuration A	Configuration B	Label	Type of power supply	Nominal voltage (V) ⁽²⁾	Full scale time	Keying position ⁽³⁾
TOKe TOKr	E: Energy Railway Fixed Equipment R: Railway Rolling Stock	4: Led (as standard)	0: Standard 2: P2 4: P4 GEO 5: P5 GEO 6: P6 GEO	F	C: Vdc ⁽⁴⁾ A: Vac 50 Hz H: Vac 60 Hz	024 - 036 - 048 072 - 110 - 125 132 - 144 - 220 230	015: 1 s 025: 2 s 045: 4 s 085: 8 s 165: 16 s 325: 32 s 01M: 1 min 02M: 2 min 04M: 4 min 08M: 8 min 16M: 16 min 32M: 32 min 64M: 64 min	ххх

	TOKe	E	4	0	F	С	110	045		
nple	TOKeE40F-C110-04S - TOKe relay, ENERGY series, 110Vdc coil, full scale 4 seconds									
Exan	TOKr	R	4	4	F	С	024	08M		
	TOKrR	44F-C024-08M - TC	OKr relav, ROLLIN	IG STOCK series.	24Vdc o	oil, full scale 8 mi	nutes, with P4GEO	finish (gold-plate	ed contacts)	

(1) E = ENERGY: all applications, except for railways rolling stock.

Suitable on energy production, transport and distribution plants, railways fixed equipment, petrolchemical and heavy industry.

R = RAILWAYS, ROLLING STOCK: Application on board rolling stock (rail-tram-trolley vehicles). Electrical characteristics according to EN60077. Availables also the product series:

RAILWAYS, FIXED EQUIPMENT: Approved and conforming relays and products to RFI (FS Group) specification no. RFI DPRIM STF IFS TE 143 A

For the list of RFI approved and conforming products, consult dedicated catalog "RAILWAY SERIES - RFI APPROVED".

STATIONS: ENEL approved material meeting LV15/LV16 specifications.

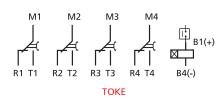
For the list of ENEL approved and conforming products, consult the dedicated catalog "STATIONS SERIES – LV15-LV16-LV20".

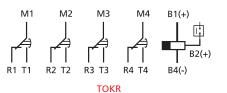
(2) Other values on request.

(3) Optional value. The positive mechanical keying is applied according to the manufacturer's model.

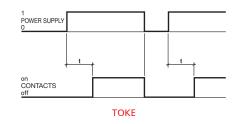
(4) Rolling Stock version, Vdc only available.

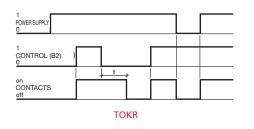
SOCKET NUMBERING EXPLANATIONS


FRONT CONNECTION

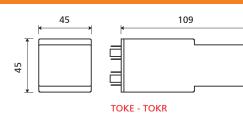

BACK CONNECTION

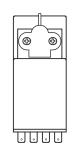
PCB MOUNT


CHAUVIN ARNOUX

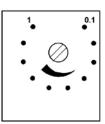

ENERGY

Functional diagram

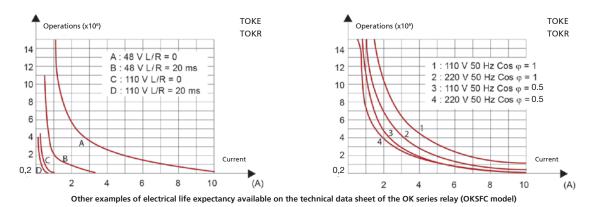



e(t): DC<15% / AC < 20% of time t.

Time delay – Switching time setting	TOKe - TOKr
Time setting	By way of potentiometer, with slotted head screw
Full scale times available	1-2-4-8-16-32 seconds, 1-2-4-8-16-32-64 minutes
Time setting range	10100 % of full scale
Accuracy, setting (0.81.1 Un, t=20°C)	± 5% of time delay
Accuracy, repeatability	DC: ± 0.5% / AC: ± 0.5% + 20ms
Reset	< 100ms - in time-delay phase < 1s


(1) The time varies by the same percentage as the input voltage fluctuation, within limits of \pm 10%.

Dimensions



Finish for ROLLING STOCK version (TOK)

Time setting (TOK) The scale shown on the relay (0.1-1) is approximate

Sockets and retaining clips		
Number of terminals (standard dimensions 5x0.8mm)	16	Retaining clip
For wall or rail mounting		
Spring clamp, wall or DIN H35 rail mounting	PAIR160	RL48
Screw, wall or DIN H35 rail mounting	48BIP20-I DIN	RL48
Screw, wall mounting	48BL	RL48
Double faston, wall mounting	48L	RL48
For flush mounting		
Double faston (4.8 × 0.8 mm)	ADF2	RL48
Screw	43IL ⁽¹⁾	RL43
For mounting on PCB	65	RL43

(1) Insert the clip before fastening the socket on the panel.

For more details, see specifications of mounting accessories.

Mounting tips

The preferred mounting position is on the wall, with the relay positioned horizontally in the reading direction on the nameplate. For correct use of the relays, they should be spaced apart by at least 5 mm in the horizontal direction and 20 mm in the vertical direction. This is to allow correct upward dissipation of the heat generated by the coil. Set these distances according to the socket used. Distances can be reduced depending on the environmental application conditions and on the relay duty cycle.

For safe and secure operation, it is advisable to use retaining clips.

No special maintenance is required.

Condensation can form inside the relay when powered up and the outside ambient temperature is cold; this is quite normal and does not affect the operation of the relay. The plastic materials of the relay do not possess hygroscopic properties.

OKT OKR SERIES

Time setting flat head slotted screw

Time setting knob

PRODUCT ADVANTAGES __

- Plug-in relay with time delay on pick-up or on drop-out
- Time delay setting from 0.1 second up to 1 hour
- Wide range of time settings available
- Operation using d.c. or a.c. power supply with a single product
- Solid and rugged construction for heavy or intensive duty
- Long life expectancy
- Separate arc breaking chambers
- Magnetic arc blow-out standard
- Independent and self-cleaning contacts
- Excellent shock and vibration resistance
- Wide range of sockets
- Retaining clip for secure locking of relay on socket
- Transparent cover, pull-out handle
- Positive mechanical keying for relay and socket

DESCRIPTION _

The relays in the **OKR and OKT series** are monostable types with time delay, using 4 or 3 COfollowing the same basic electromechanical design of the POK model, they embody all the features and benefits of this product.

Excellent electrical and mechanical performance levels allow the product to be used in the most demanding of sectors such as, for example, control and signalling functions in electricity generating stations, electrical transformer stations, rail transport or in industries with continuous production processes (chemical industry, petroleum industry, rolling mills, cement factories, etc.). In particular, with their notable **shock and vibration resistance**, they are ideal for use on rolling stock.

The electronic timing circuit is designed using analog technology: by adopting a limited number of select components, the end product is guaranteed to meet high standards of quality and reliability.

OKRe and OKTa models offer time delay on pick-up, whereas OKRr and OKTr models offer time delay on drop-out. In the case of the OKTr model, one of the 4 contacts must be connected to the power coil (see functional diagram). This obviates the need for connection of an auxiliary power supply to the relay, separate from the control. In this situation, the contacts available for switching purposes are 3 in number.

Models are available with different full scale time values (from 1 second up to 60 minutes), so as to offer a wide range of time delay settings. The full scale value is a fixed, factory set value determined as part of the manufacturing process. The end user can adjust the response time from a minimum 10% up to 100% of full scale with absolute ease, by way of the knob-operated or slotted screw-driven potentiometer located on the top of the relay housing. Power can be supplied to the relay from a d.c. or an a.c. source operating at 50 or 60 Hz.

For further details of electromechanical construction, see the chapter on the "POK series".

Models	Function		Function Number of time delay contacts		Number of time delayed contacts	Se	etting control	Rolling stock application		MONO
	Pick-up	Drop-out		Knob	Flat head slotted screw			. I		
OKTa	•		4	•	•	•	•			
OKTr		•	3	•	•	٠	•	TABLE		
OKRe	٠		4	•	•	٠	•	STAN		
OKRr		•	4	•	•	٠	•	- NOW		

FOR CONFIGURATION OF PRODUCT CODE, SEE "ORDERING SCHEME" TABLE

Coil specifications

	DC / AC: 24-36-48-72-110-125-132-144-220 -230	Nominal voltages Un (1)
CTING	4 W / 5 VA	Max. consumption at Un (DC/AC)
A O	80115% Un	Operating range ⁽¹⁾
FAST-	DC : 70125% Un	Rolling stock version ^{(2) (3)}
	Continuous	Type of duty
	> 5% Un	Drop-out voltage ⁽⁴⁾
~ 0		

(1) Other values on request. Operation with d.c. or a.c. power supply.

(2) See "Ordering scheme" table for order code.

(3) For operating ranges different to that specified by EN60077, refer to table "Rolling stock versions - Special Ranges".

(4) Limit value for supply voltage, expressed as % of the nominal value, beneath which the relay is certainly de-energized.

pecifications	ОКТа	OKTr	OKRe - OKRr	
Number and type	4 CO, form C	3 CO, form C	4 CO, form C	
Nominal (1)		5 A		
Maximum peak (1 s) (2)		10 A		
Maximum pulse (10ms) ⁽²⁾		100 A		
le of electrical life expectancy (3)	0.5A - 110 Vdc -	L/R = 40 ms: 10 ⁵ operations, 1,800) operations/hour	
n load Standard contacts		500 mW (20 V, 20 mA)		
Gold-plated contacts P4GEO (4)		100 mW (10 V, 5 mA)		
Gold-plated contacts P8 ⁽⁴⁾				
Maximum breaking voltage				
Contact material		AgCu		
Switching time at Un (ms) (5) (6)		DC - AC		
Pick-up (NO contact closing)		\leq 20 - \leq 20		
Drop-out (NC contact closing)		≤ 15 - ≤ 20		

(1) Nominal current: on all contacts simultaneously, reduction of 30%.

(2) The max. peak and pulse currents are those currents that can be handled, for a specified time, by the contact. They do not refer to steady or interrupted currents.

(3) 1,800 operations/hour - For other values, see electrical life expectancy curves.

(4) Specifications of gold-plated contacts on new relay

a) Plating material: P4 GEO: gold-nickel alloy (>6µ) P8 : gold-cobalt alloy (>5µ), knurled contact

b) When the gold-plated contact is subject to heavy loads, it will be degraded on the surface. In this case, the characteristics of the standard contact should be taken into consideration. This does not impair relay operation.

(5) Unless specified otherwise, the operating time signifies until stabilization of the contact (including bounces). It should be added to the preset delay time.

(6) Addition of a flyback diode connected in parallel with the coil (DC version only) causes an increase in operating time when the relay drops out.

nsulation		
nsulation resistance (at 500Vdc)		⊢
between electrically independent circuits and between these circuits and ground	> 1,000 MΩ	NNO
between open contact parts	> 1,000 MΩ	M
Nithstand voltage at industrial frequency		PCI
between electrically independent circuits and between these circuits and ground	2 kV (1 min) - 2.2 kV (1 s)	
between open contact parts	1 kV (1 min) - 1.1 kV (1 s)	S
between adjacent contacts	2.5 kV (1 min) - 3 kV (1 s)	CLP
mpulse withstand voltage (1.2/50µs - 0.5J)		Ŭ Z
between electrically independent circuits and between these circuits and ground	5 kV	AINI
between open contact parts	3 kV	REI

Mechanical specifications		
Mechanical life ex	pectancy	20x10 ⁶ operations
Maximum switching rate Mo	echanical	3600 operations/hour
Degree of protection (with relay n	nounted)	IP40
Dimensio	ons (mm)	40x45x97 ⁽¹⁾
W	eight (g)	~ 220
(1) Excluding output terminals and adjuster knob, if specified.		
Environmental specifications		
Operating temperature		
	tandard	-10 to +55 °C
Version for rollir	ng stock	-25 to +70 °C
Storage and shipping temperature		-25 to +85 °C
Relative humidity	2	Standard: 75% RH, Tropicalized: 95% RH
Resistance to vibrations	1	5g - 10 to 55 Hz - 1 min.
Resistance to shock		20g - 11ms
Fire behavior		V0
Standards and reference values		
EN 61810-1, EN 61810-2, EN 61810-7	1	Electromechanical elementary relays
EN 61812-1	-	Timer relays

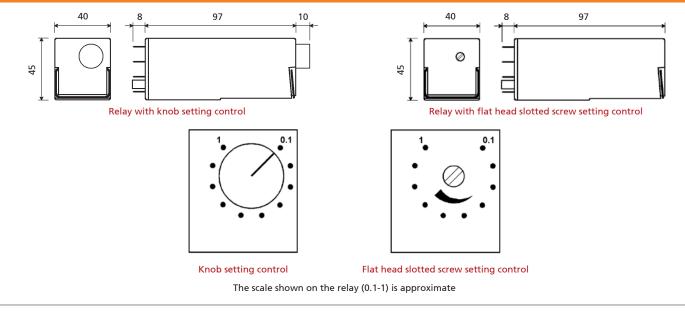
EN 60695-2-10 Fire behavior EN 61000 Electromagnetic compatibility EN 60529 Degree of protection provided by enclosures

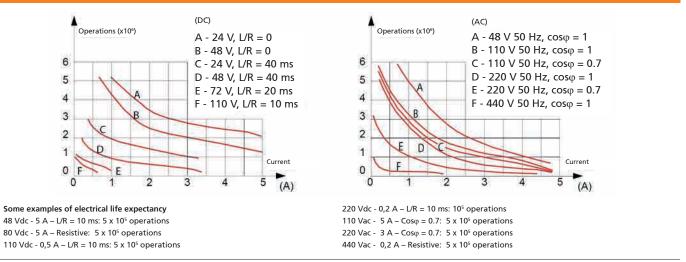
Unless otherwise specified, the products are designed and manufactured according to the requirements of the above-mentioned European and International standards. In accordance with EN 61810-1, all items of technical data are referred to ambient temperature 23 °C, atmospheric pressure 96kPa and 50% humidity. Tolerance for coil resistance, nominal electrical input and nominal power is ±7%.

Railways, rolling stock - Standa	ards
EN 60077	Electric equipment for rolling stock - General service conditions and general rules
EN 50155 EN 61373	Electronic equipment used on rolling stock Shock and vibration tests, Cat 1, Class B
EN 45545-2	Fire behavior, Cat E10, Requirement R26, V0
ASTM E162, E662	Fire behavior

Ŕ	Railways, rolling stock – Specia	l operating ranges		
	Nominal voltage	Minimum pick-up voltage	Maximum operating voltage	Order symbol (1)
	24 Vdc	18	33	Z01
	72 Vdc	55	104	Z01
	110 Vdc	77	140	Z01
	128 Vdc	85	155	Z01

(1) To order the relay with the special operating range, indicate the "Z0x" symbol in the "Keying position" field of the ordering scheme. The special range may be subject to operating specifications different from standard specifications. Please contact us for further information.


Configurations - Options	5
P2	Tropicalization of coil with epoxy resin for use with 95% RH (@ T 50 °C). This treatment also protects the coil against corrosion which could occur by the combination of humidity with certain chemical agents, such as those found in acid atmospheres (typical of geothermal power stations) or saline atmospheres
P4GEO	Gold plating of contacts with gold-nickel alloy, thickness $\geq 6\mu$. This treatment ensures long-term capacity of the contact to conduct lower currents in harsh ambient conditions such as acid atmospheres (typical of geothermal power stations) or saline atmospheres.
P5GEO	P4GEO type gold-plating + P2 coil tropicalization.
P6GEO	Gold-plating of contacts, contact terminals and output terminals + P2 coil tropicalization.
P7	Silver cadmium oxide contacts.
P8	Gold plating of contacts with gold-cobalt alloy, thickness $\geq 5\mu$, knurled fixed contact. This finish allows further improvement of the gold-plated contact performance compared to the treatment P4GEO.
LED	LED indicator showing presence of power supply, wired in parallel with the coil.
FLYBACK DIODE	Polarized component connected in parallel with the coil (type 1N4007 or BYW56 for rolling stock version) designed to suppress overvoltages generated by the coil when de-energized.
TRANSIL	Non-polarized component connected in parallel with the coil. Behavior is similar to that of a varistor, with faster operating times.


	roduct code	Application (1)	Configuration A	Configuration B	Label	Type of power supply	Nominal voltage (V) ⁽²⁾	Setting control	Full scale time	Keying position ⁽³⁾
(OKRe OKTa OKRr OKTr	E: Energy Railway Fixed Equipment R: Railway Rolling Stock	1: Standard 2: Diode // 3: Varistor 4: Led 5: Diode // + Led 6: Varistor + Led 7: Transil 8: Transil + Led	0: Standard 2: P2 4: P4 GEO 5: P5 GEO 6: P6 GEO 7: P7 8: P8	F	T: Vdc/ac C: Vdc ⁽⁴⁾	024 - 036 - 048 072 - 110 - 125 132 - 144 - 220 230	M: Knob C: Flat head slotted screw	015: 1 s 05 : 5 s 105: 10 s 155: 15 s 305: 30 s 01M: 1 min 02M: 2 min 05M: 5 min 10M: 10 min 15M: 15 min 30M: 30 min 60M: 60 min	XXX
	OKRe	E	1	0	F	Т	110	м	055	
_							je 110Vdc, full sca			ontrol
	OKRr	R	5	0	F	С	072	С	30M	
			_				ge 72Vdc, special			ith diode.
		11.501 6072 623	•	-			crew setting cont	-	tt, cyuippen	itii uioac,
F = 1		applications, except f	for railways rolling s	tock						
railab RAIL	oles also the p LWAYS, FIXED TIONS: ENEL	product series: D EQUIPMENT: Appro For the approved material m	oved and conforming le list of RFI approved neeting LV15/LV16 sp	g relays and produc d and conforming p pecifications.	cts to RFI products,	(FS Group) specifica , consult dedicated c	characteristics accordi ation no. RFI DPRIM STI catalog "RAILWAY SER ONS SERIES – LV15-LV1	F IFS TE 143 A IES – RFI APPROVI	ED".	
	ier values on									
) Opti) Rolli	eer values on tional value. T ling Stock ver ctional dia	request. The positive mechani rsion, Vdc only availa agram	ical keying is applied ble.	d according to the r	manufact	turer's model.				
) Opti) Rolli	er values on cional value. T ling Stock ver ctional dia 3A	request. The positive mechani rsion, Vdc only availa agram 6A 3B	6B 6B 6B 7B 1A(-)	according to the r	6A		1B(+) 1B(+) 2B(+) 1A(-)	3A 6A 5A 4A 8A 7A		2B(+) A(-) together
) Opti) Rolli	er values on cional value. T ling Stock ver ctional dia 3A	request. The positive mechani rsion, Vdc only availa agram 6A 3B 6A 6A 6 6A 6 6A 6 6A 6 6A 6 6A 6 6A 6	6B 6B 6B 7B 1A(-)	according to the r	6A	turer's model.	1B(+) 1B(+) 2B(+)	3A 6A 5A 4A 8A 7A	4B(+) 4B(+)	ц Т а(-)
) Opti) Rolli	er values on cional value. T ctional dia 3A 3A 5A 4A 8A	request. The positive mechani rsion, Vdc only availa agram 6A 3B 6A 6A 6 6A 6 6A 6 6A 6 6A 6 6A 6 6A 6	6B 6B 6B 7B 1A(-)	according to the r	6A	turer's model. $3B \qquad 6B$ $5B \ 4B \qquad 8B \ 7B$ OKRr	1B(+) 1B(+) 2B(+)	3A 6A 5A 4A 8A 7A	4B(+) 4B(+)	ц Т а(-)
) Opti) Rolli	er values on cional value. T ctional dia 3A 3A 5A 4A 8A	request. The positive mechani rsion, Vdc only availa agram 6A 3B 4 7A 5B 4B 8F 0KRe - 0KT agram	6B 6B 6B 7B 1A(-)	according to the r	6A	turer's model. $3B \qquad 6B$ $5B \ 4B \qquad 8B \ 7B$ OKRr	1B(+) 	3A 6A 5A 4A 8A 7A	4B(+) 4B(+)	ц Т а(-)
) Opti) Rolli	er values on cional value. T ctional dia 3A 3A 5A 4A 8A	request. The positive mechani rsion, Vdc only availa agram 6A 3B 4 7A 5B 4B 8F 0KRe - 0KT agram	6B 6B 6B 7B 1A(-)	according to the r	6A	turer's model. $3B \qquad 6B$ $5B 4B \qquad 8B 7B$ OKRr 1	1B(+) 	3A 6A 5A 4A 8A 7A	4B(+) 4B(+)	ц Т а(-)
) Opti) Rolli	er values on cional value. T ctional dia 3A 3A 5A 4A 8A	request. The positive mechani rsion, Vdc only availa agram 6A 3B 4 6A 3B 6A 6 7A 5B 4B 8E 0KRe - OKT	6B 6B 6B 7B 1A(-)	according to the r	6A	turer's model. 3B 6B 5B 4B 8B 7B OKRr 1 0 1 0 0 1 0 0	1B(+) 1B(+) 2B(+) 1A(-)	3A 6A 5A 4A 8A 7A	4B(+) 4B(+)	ц Т а(-)
) Opti) Rolli	er values on cional value. T ctional dia 3A 3A 5A 4A 8A	request. The positive mechani rsion, Vdc only availa agram 6A 3B 4 7A 5B 4B 8F 0KRe - 0KT agram	6B 6B 6B 7B 1A(-)	according to the r	6A	turer's model. 3B 6B 5B 4B 8B 7B OKRr 1 0 1 0 0 1 0 0	1B(+) 1B(+) 2B(+) 1A(-) NTROL (1B)	3A 6A J J 5A 4A 8A 7A Connect terr	4B(+) 4B(+)	ц Т а(-)
) Opti) Rolli	er values on cional value. T ctional dia 3A 3A 5A 4A 8A	request. The positive mechani rsion, Vdc only availa agram 6A 3B 6A 3B 6A 7A 5B 4B 8E OKRe - OKT agram 1 POWER SUPPLY 0 0 0 0 0 0 0 0 0 0 0 0 0	6B 6B 6B 7B 1A(-)	according to the r	6A	turer's model. 3B 6B 5B 4B 8B 7B OKRr 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	1B(+) 	3A 6A J J 5A 4A 8A 7A Connect terr	4B(+) 4B(+)	ц Т а(-)
) Opti) Rolli	er values on cional value. T ctional dia 3A 3A 5A 4A 8A	request. The positive mechani rsion, Vdc only availa agram 6A 3B 6A 3B 6A 7A 5B 4B 8E OKRe - OKT agram 1 POWER SUPPLY 0 0 0 0 0 0 0 0 0 0 0 0 0	6B 6B 7B 1A(-)	according to the r	6A	turer's model. 3B 6B 5B 4B 8B 7B OKRr 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	1B(+) 	3A 6/ J J 5A 4A 8A 7/ Connect terr	4B(+) 4B(+)	ц Т а(-)
) Opti) Rolli Fund	er values on cional value. T ctional dia 3A 5A 4A 8A	request. The positive mechani rsion, Vdc only availa agram 6A 3B 6A 3B 6A 7A 5B 4B 8E OKRe - OKT agram 1 POWER SUPPLY 0 0 0 0 0 0 0 0 0 0 0 0 0	6B 6B 2B(+ B 7B 1A(-) a OKRe - OKTa	according to the r	6A	turer's model. 3B 6B 5B 4B 8B 7B OKRr 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	1B(+) 	3A 6/ J J 5A 4A 8A 7/ Connect terr	4B(+) 4B(+)	ц Т а(-)
) Opti) Rolli Fund	er values on cional value. T ctional dia 3A 5A 4A 8A	request. The positive mechani rsion, Vdc only availa agram 6A 3B 4, 7A 5B 4B 8F OKRe - OKT agram 1 POWER SUPPLY of 0 0 0 0 0 0 0 0 0 0 0 0 0	6B 6B 2B(+ B 7B 1A(-) a OKRe - OKTa	according to the r	6A 6A 3A 7A	turer's model. 3B 6B 5B 4B 8B 7B OKRr 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	1B(+) 	3A 6A 5A 4A 8A 7/ Connect terr	A 8B 7B 1/ minals 1B and 3B OKTr	↓ A(-) together
) Opti) Rolli Fund Fund Time	er values on cional value. T ing Stock ver ctional dia 3A 5A 4A 8A ctional dia ctional dia	request. The positive mechani rsion, Vdc only availa agram 6A 3B 4, 7A 5B 4B 8F OKRe - OKT agram 1 POWER SUPPLY of 0 0 0 0 0 0 0 0 0 0 0 0 0	6B 6B 2B(+ B 7B 1A(-) a OKRe - OKTa	according to the r	6A 6A 3A 7A	turer's model. 3B 6B 5B 4B 8B 7B OKRr 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	1B(+) 1B(-) LER SUPPLY DNTROL (1B) DNTACTS	3A 6/ 5A 4A 8A 7/ Connect terr	A 8B 7B 1/ minals 1B and 3B OKTr	↓ A(-) together
) Opti) Rolli Fund Fund Time Time Full :	er values on cional value. T ing Stock ver ctional dia 3A 5A 4A 8A ctional dia ctional dia	request. The positive mechani rsion, Vdc only availa agram 6A 3B 4 7A 5B 4B 8E OKRe - OKT agram 1 POWER SUPPLY off witching time se es available	6B 6B 2B(+ B 7B 1A(-) a OKRe - OKTa	according to the r	6A 6A 3A 7A	turer's model. 3B 6B 5B 4B 8B 7B OKRr 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	1B(+) 2B(+) 2B(+) 1A(-) DNTROL (1B) DNTACTS C DMTACTS	3A 6/ 5A 4A 8A 7/ Connect terr	A 8B 7B 1/ minals 1B and 3B OKTr	↓ A(-) together
) Opti) Rolli Fund Fund Time Fund Time Full : Time	er values on tional value. T tiing Stock ver ctional dia 3A 5A 4A 8A ctional dia ctional dia e delay - St e setting scale time e setting r	request. The positive mechani rsion, Vdc only availa agram 6A 3B 4 7A 5B 4B 8E OKRe - OKT agram 1 POWER SUPPLY 0 t mover SUPPLY off witching time se es available range	6B 6B 2B(+ B 7B 1A(-) a OKRe - OKTa etting	according to the r	6A 6A 3A 7A	turer's model. 3B 6B 5B 4B 8B 7B OKRr 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	1B(+) 1B(+) 2B(+) 1A(-) NTROL (1B) NTROL (1B) NTACTS C DMTeter, with knob 5-10-15-30 second 10100	3A 6/ 5A 4A 8A 7/ Connect terr	A 8B 7B 1/ minals 1B and 3B OKTr	↓ A(-) together
) Opti) Rolli Fund Fund Time Full : Time Accu	er values on cional value. T ctional dia 3A 5A 4A 8A ctional dia ctional dia e delay - SP e setting scale time e setting r uracy, setti	request. The positive mechani rsion, Vdc only availa agram 6A 3B 6A 3B 6A 7A 5B 4B 8F OKRe - OKT agram 1 0 0 0 0 0 0 0 0 0 0 0 0 0	6B 6B 2B(+ B 7B 1A(-) a OKRe - OKTa etting	according to the r	6A 6A 3A 7A	turer's model. 3B 6B 5B 4B 8B 7B OKRr 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	1B(+) 2B(+) 2B(+) 1A(-) NTROL (1B) DNTROL (1B) DNTACTS C DM	3A 6/ 5A 4A 8A 7/ Connect terr KRr-OKTr or flat head s s, 1-2-5-10-30- % of full scale	A 8B 7B 1/ minals 1B and 3B OKTr	↓ A(-) together
) Opti) Rolli Fund Fund Time Full : Time Accu	er values on tional value. T ctional dia 3A 5A 4A 8/ ctional dia ctional dia scale time e setting scale time e setting r uracy, repo	request. The positive mechani rsion, Vdc only availa agram 6A 3B 6A 3B 6A 7A 5B 4B 8F OKRe - OKT agram 1 0 0 0 0 0 0 0 0 0 0 0 0 0	6B 6B 2B(+ B 7B 1A(-) a OKRe - OKTa etting	according to the r	6A 6A 3A 7A	turer's model. 3B 6B 5B 4B 8B 7B OKRr 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0	1B(+) 1B(+) 2B(+) 1A(-) NTROL (1B) NTROL (1B) NTACTS C DMTeter, with knob 5-10-15-30 second 10100	3A 6/ 5A 4A 8A 7/ Connect terr	A 8B 7B 1/ minals 1B and 3B OKTr OKTr	↓ A(-) together

CHAUVIN ARNOUX ENERGY

KEYING

Electrical life expectancy

(1) Switching frequency 1,200 operations/hour, 50% cycle.

			BLE
Sockets and retaining clips			MONOSTABLE
Number of terminals (standard dimensions 5x0.8mm)	16	Retaining clip	DM
For wall or rail mounting			Ţ
Spring clamp, wall or DIN H35 rail mounting	PAIR160	RC48	EOUS
Screw, wall or DIN H35 rail mounting	48BIP20-I DIN	RC48	INSTANTANEC MONOSTABLE
Screw, wall mounting	48BL	RC48	STAN
Double faston, wall mounting	48L	RC48	MOM
For flush mounting			
Double faston (4.8 × 0.8 mm)	ADF2	RC48	
Screw	43IL (1)	RC43	
For mounting on PCB	65	RC43	-

(1) Insert the clip before fastening the socket on the panel.

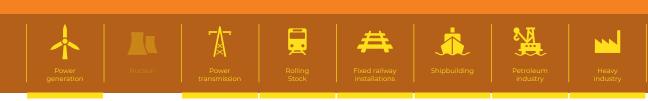
For more details, see specifications of mounting accessories.

Mounting tips

The preferred mounting position is on the wall, with the relay positioned horizontally in the reading direction on the nameplate. For correct use of the relays, they should be spaced apart by at least 5 mm in the horizontal direction and 20 mm in the vertical direction. This is to allow correct upward dissipation of the heat generated by the coil. Set these distances according to the socket used. Distances can be reduced depending on the environmental application conditions and on the relay duty cycle. For maximum reliability in operation, it is advisable to use retaining clips.

No special maintenance is required.

Condensation can form inside the relay when powered up and the outside ambient temperature is cold; this is quite normal and does not affect the operation of the relay. The plastic materials of the relay do not possess hygroscopic properties.



USER SECTORS

UTM

PRODUCT ADVANTAGES

- Static timer unit, operating on pick-up or drop-out
- Compact dimensions
- Timer control suitable for all our relays
- Wide time setting range from 0.1s to 9 hours, great accuracy over the entire adjustment range
- Availability of 2 outputs: timed and instantaneous
- Led indicating power-up status
- Time setting with dipswitches
- High electromagnetic interference immunity
- Solid and rugged construction for heavy or intensive duty
- Wide range of sockets
- Retaining clip for secure locking of unit on socket
- Transparent cover

DESCRIPTION.

The **UTM unit** is a **static timer** module, designed for applications requiring a time delay activated on pick-up or on drop-out.

Offered in 2 versions, these units can be used to control an external load, introducing a delay either **on pick-up** (UTME) or **on drop-out** (UTMR).

There are 2 outputs available: one timed, the other instantaneous, with maximum rated power 6W.

The UTM offers high reliability, thanks to the use of an electronic circuit requiring few components, and to the selection of professional grade products.

Switching times ranging from 0.1 second to over 9 hours are obtainable, with extreme accuracy guaranteed over the entire setting range. This is made possible as the module has 16 intermediate scales, freely selectable by the user. Switching time is adjustable by means of two dipswitches, 4- and 8-bit respectively, located on the front of the relay. The 4-bit dipswitch allows selection of the most suitable intermediate scale, whilst the 8-bit dipswitch is used for selection of the exact switching time.

The electronic circuit is immune to high electromagnetic interference, typical of high voltage electricity distribution stations.

The construction of the module and careful choice of the materials are such as to ensure long life and considerable strength even in harsh operating environments and in the presence of strong temperature fluctuations.

In particular, with its notable shock and vibration resistance, the unit is ideal for use on rolling stock

CHAUVIN ARNOUX

	Models Function			Output		Rolling stock application	า
	Pick-up	Drop-out	Instanta	aneous	Time-delayed		
UTME	•		•	•	•	•	
UTMR		•	•	•	•	•	
	FOR CO	NFIGURATION OF PR		DDE, SEE	"ORDERING SCHEM	E″ TABLE	
Power supply da	ta						
	Nominal voltages U				DC: 24-36-72-110-128		
Max. cons	umption at Un (DC/				0.6 W		
	Operating rang Rolling stock versio				80115% Un 70125% Un		
	Type of d				Continious		
Maxi	mum power at outp				6 W (total)		
Other values on reque	est 2. See "Ordering sche	me" table for order code.					
Insulation							
Insulation resista between electri	. ,	and between these circuits ar	nd around		> 1	,000 MΩ	
	age at industrial fre	quencybetween electrically	/ indepen-				
Impulse withstar	dent circuits d voltage (1.2/50µs)	and between these circuits ar	nd ground		2 kV (1 mi	n) - 2.2 kV (1 s)	
		and between these circuits ar	nd ground			5 kV	
Mechanical Spec							
	Degree of	protection (with unit r				IP40	
		Dimensior			40	x 40 x 50	
		V	Veight (g)			~ 60	
Output terminals exc	uded.	V	Veight (g)			~ 60	
Output terminals exc Environmental s		V	Veight (g)			~ 60	
Environmental s	pecifications			-25° to +5	55°C	~ 60	
	pecifications erature		Standard	-25° to +7	70°C	~ 60	
Environmental s Operating tempe Storage and ship	pecifications erature Ve ping temperature		Standard		70°C 35°C	~ 60	
Environmental s Operating tempo Storage and ship Relative humidit	pecifications erature Va ping temperature y		Standard	-25° to +7 -40° to +8 Standard 5g - 10 to	70°C 35°C : 75% RH 9 55 Hz - 1 min	~ 60	
Environmental s Operating tempe Storage and ship	pecifications erature va ping temperature y rations		Standard	-25° to +7 -40° to +8 Standard 5g - 10 to 20g - 11 r	70°C 35°C : 75% RH 9 55 Hz - 1 min	~ 60	
Environmental s Operating tempo Storage and ship Relative humidit Resistance to vib	pecifications erature va ping temperature y rations		Standard	-25° to +7 -40° to +8 Standard 5g - 10 to	70°C 35°C : 75% RH 9 55 Hz - 1 min	~ 60	
Environmental s Operating tempe Storage and ship Relative humidit Resistance to vib Resistance to sho	pecifications erature Va ping temperature y rations ock		Standard	-25° to +7 -40° to +8 Standard 5g - 10 to 20g - 11 r	70°C 35°C : 75% RH 9 55 Hz - 1 min	~ 60	
Environmental s Operating tempe Storage and ship Relative humidit Resistance to vib Resistance to sho Fire behavior	pecifications erature Va ping temperature y rations ock		Standard	-25° to +7 -40° to +8 Standard 5g - 10 to 20g - 11 r	70°C 35°C : 75% RH 9 55 Hz - 1 min ns	~ 60	
Environmental s Operating tempe Storage and ship Relative humidit Resistance to vib Resistance to sho Fire behavior Standards and re EN 61812-1 EN 60695-2-10	pecifications erature Va ping temperature y rations ock		Standard	-25° to +7 -40° to +8 Standard 5g - 10 to 20g - 11 r V0 Timer rela	70°C 35°C : 75% RH o 55 Hz - 1 min ns ays	~ 60	
Environmental s Operating tempe Storage and ship Relative humidit Resistance to vib Resistance to sho Fire behavior Standards and re EN 61812-1	pecifications erature Va ping temperature y rations ock		Standard	-25° to +7 -40° to +8 Standard 5g - 10 to 20g - 11 r V0 Timer rel. Fire beha Electrom	70°C 35°C : 75% RH o 55 Hz - 1 min ns		
Environmental s Operating tempe Storage and ship Relative humidit Resistance to vib Resistance to sho Fire behavior Standards and re EN 61812-1 EN 60695-2-10 EN 61000 EN 60529	pecifications erature v ping temperature y rations ock	ersion for railways, rol	Standard ling stock	-25° to +7 -40° to +8 Standard 5g - 10 to 20g - 11 r V0 Timer rela Fire beha Electroma Degree o	70°C 35°C : 75% RH o 55 Hz - 1 min ns ays vior agnetic compatibility f protection providec	l by enclosures	
Environmental s Operating tempe Storage and ship Relative humidit Resistance to vib Resistance to sho Fire behavior Standards and re EN 61812-1 EN 60695-2-10 EN 61000 EN 60529 nless otherwise specifi accordance with EN 60	erature Ve ping temperature y rations ock seck ed, products are designed 1810-1, all items of techni	ersion for railways, rol and manufactured to the rec cal data are referred to ambi	Standard ling stock quirements of ent temperatu	-25° to +7 -40° to +8 Standard 5g - 10 to 20g - 11 r V0 Timer rela Fire beha Electroma Degree o	70°C 35°C : 75% RH o 55 Hz - 1 min ns ays vior agnetic compatibility f protection providec and International standards	l by enclosures indicated above.	
Environmental s Operating tempe Storage and ship Relative humidit Resistance to vib Resistance to sho Fire behavior Standards and re EN 61812-1 EN 60695-2-10 EN 61000 EN 60529 nless otherwise specifi accordance with EN 60	erature Ve ping temperature y rations ock ed, products are designed 1810-1, all items of techni ance, nominal electrical in	ersion for railways, rol	Standard ling stock quirements of ent temperatu	-25° to +7 -40° to +8 Standard 5g - 10 to 20g - 11 r V0 Timer rela Fire beha Electroma Degree o	70°C 35°C : 75% RH o 55 Hz - 1 min ns ays vior agnetic compatibility f protection providec and International standards	l by enclosures indicated above.	
Environmental s Operating tempe Storage and ship Relative humidit Resistance to vib Resistance to sho Fire behavior Standards and re EN 61812-1 EN 60695-2-10 EN 61000 EN 60529 nless otherwise specifi accordance with EN 6 olerance for coil resista Railways, rolling	erature y ping temperature y rations ock ed, products are designed 1810-1, all items of techni ince, nominal electrical in stock - Standards	ersion for railways, roll and manufactured to the rec cal data are referred to ambie but and nominal power is ±79	Standard ling stock quirements of ent temperatu %.	-25° to +7 -40° to +8 Standard 5g - 10 to 20g - 11 r V0 Timer rela Fire beha Electroma Degree o the European rre 23 °C, atmos	70°C 35°C : 75% RH o 55 Hz - 1 min ms ays vior agnetic compatibility f protection providec and International standards ospheric pressure 96kPa and	l by enclosures indicated above. 50% humidity.	
Environmental s Operating tempe Storage and ship Relative humidit Resistance to vib Resistance to sho Fire behavior Standards and re EN 61812-1 EN 60695-2-10 EN 61000 EN 60529 nless otherwise specifi accordance with EN 60	erature y ping temperature y rations tock ed, products are designed 1810-1, all items of techni ince, nominal electrical in stock - Standards Elecc	ersion for railways, rol and manufactured to the rec cal data are referred to ambi	Standard ling stock quirements of ent temperatu %.	-25° to +7 -40° to +8 Standard 5g - 10 to 20g - 11 r V0 Timer rela Fire beha Electroma Degree o the European rre 23 °C, atmos General s	70°C 35°C : 75% RH o 55 Hz - 1 min ms ays vior agnetic compatibility f protection providec and International standards ospheric pressure 96kPa and	l by enclosures indicated above. 50% humidity.	
Environmental s Operating tempe Storage and ship Relative humidit Resistance to vib Resistance to sho Fire behavior Standards and re EN 61812-1 EN 60695-2-10 EN 61000 EN 60529 Inless otherwise specifi accordance with EN 6 olerance for coil resista Railways, rolling EN 60077 EN 50155 EN 61373	erature Va ping temperature Va rations ock ed, products are designed 1810-1, all items of techni ince, nominal electrical in stock - Standards Elecc Shor	ersion for railways, roll and manufactured to the rec cal data are referred to ambio out and nominal power is ±79 tric equipment for roll tronic equipment usec ck and vibration tests,	Standard ling stock quirements of ent temperatu %. ling stock - d on rolling Cat 1, Clas	-25° to +7 -40° to +8 Standard 5g - 10 to 20g - 11 r V0 Timer rel. Fire beha Electroma Degree o the European tre 23 °C, atmos General s g stock s B	70°C 35°C : 75% RH o 55 Hz - 1 min ms ays vior agnetic compatibility f protection providec and International standards ospheric pressure 96kPa and	l by enclosures indicated above. 50% humidity.	
Environmental s Operating tempe Storage and ship Relative humidit Resistance to vib Resistance to sho Fire behavior Standards and re EN 61812-1 EN 60695-2-10 EN 61000 EN 60529 Inless otherwise specifi accordance with EN 6 olerance for coil resista Railways, rolling EN 60077 EN 50155 EN 61373 EN 45545-2	erature y ping temperature y rations ock ed, products are designed 1810-1, all items of techni ance, nominal electrical in stock - Standards Elecc Sho Fire	ersion for railways, roll and manufactured to the rec cal data are referred to ambii out and nominal power is ±79 tric equipment for roll tronic equipment usec ck and vibration tests, behavior, Cat E10, Rec	Standard ling stock quirements of ent temperatu %. ling stock - d on rolling Cat 1, Clas	-25° to +7 -40° to +8 Standard 5g - 10 to 20g - 11 r V0 Timer rel. Fire beha Electroma Degree o the European tre 23 °C, atmos General s g stock s B	70°C 35°C : 75% RH o 55 Hz - 1 min ms ays vior agnetic compatibility f protection providec and International standards ospheric pressure 96kPa and	l by enclosures indicated above. 50% humidity.	
Environmental s Operating tempe Storage and ship Relative humidit Resistance to vib Resistance to sho Fire behavior Standards and re EN 61812-1 EN 60695-2-10 EN 61000 EN 60529 Inless otherwise specifi accordance with EN 6 olerance for coil resista Railways, rolling EN 60077 EN 50155 EN 61373	erature y ping temperature y rations ock ed, products are designed 1810-1, all items of techni ance, nominal electrical in stock - Standards Elecc Sho Fire	ersion for railways, roll and manufactured to the rec cal data are referred to ambio out and nominal power is ±79 tric equipment for roll tronic equipment usec ck and vibration tests,	Standard ling stock quirements of ent temperatu %. ling stock - d on rolling Cat 1, Clas	-25° to +7 -40° to +8 Standard 5g - 10 to 20g - 11 r V0 Timer rel. Fire beha Electroma Degree o the European tre 23 °C, atmos General s g stock s B	70°C 35°C : 75% RH o 55 Hz - 1 min ms ays vior agnetic compatibility f protection providec and International standards ospheric pressure 96kPa and	l by enclosures indicated above. 50% humidity.	
Environmental s Operating tempe Storage and ship Relative humidit Resistance to vib Resistance to sho Fire behavior Standards and re EN 61812-1 EN 60695-2-10 EN 61000 EN 60529 Inless otherwise specifi accordance with EN 6 olerance for coil resista Railways, rolling EN 60077 EN 50155 EN 61373 EN 45545-2	erature y ping temperature y rations ock ed, products are designed 1810-1, all items of techni ance, nominal electrical in stock - Standards Elecc Sho Fire	ersion for railways, roll and manufactured to the rec cal data are referred to ambii out and nominal power is ±79 tric equipment for roll tronic equipment usec ck and vibration tests, behavior, Cat E10, Rec	Standard ling stock quirements of ent temperatu %. ling stock - d on rolling Cat 1, Clas	-25° to +7 -40° to +8 Standard 5g - 10 to 20g - 11 r V0 Timer rel. Fire beha Electroma Degree o the European tre 23 °C, atmos General s g stock s B	70°C 35°C : 75% RH o 55 Hz - 1 min ms ays vior agnetic compatibility f protection providec and International standards ospheric pressure 96kPa and	l by enclosures indicated above. 50% humidity.	

KEYING

⊒ U	TM Ordering sch	ieme						
	Product code	Application ⁽¹⁾	Configuration A	Configuration B	Label	Type of power supply	Nominal voltage (V) ⁽²⁾	Keying position ⁽³⁾ / Options
_	TME TMR	E: Energy R: Railway Rolling Stock	1: Standard	0: Standard	F	C: Vdc	024 - 036 072 - 110	XXX L = Low temperature
0	UTME	E	1	0	F	С	110	
nple		ι	JTMEE10F-C110 -	UTME unit, ENE	RGY sei	ries, nominal voltag	je 110Vdc	
Example	UTMR	R	1	0	F	С	024	L
		UTMRR10F-C024L	- UTMR unit, ROLI	ING STOCK series	s, nomi	nal voltage 24 Vdc, v	with option "L" (lov	w temp.)

(1) ENERGY: all applications except for railway.

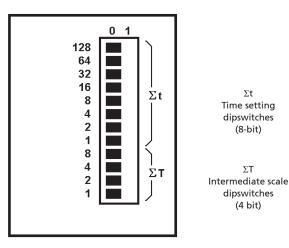
RAILWAY, ROLLING STOCK: Application on board rolling stock (rail-tram-trolley vehicles). Electrical specifications according to EN60077.

(2) Other values on request.

(3) Optional value. Multiple selection possible. Positive mechanical keying is applied according to the manufacturer's model.

Timing - Time delay setting	
Time setting	By means of dipswitches
Time setting range	100 ms32,768 s
Intermediate scales	16, from 1 second to 32,768 seconds
Resolution of operating time setting	1/256 of selected scale
Accuracy, time-delay (1)	\pm 1% of the switching time \pm 0.5% of the scale
Accuracy, repeatability	DC : ± 0.5% AC : ± 0.5% + 20 ms
Reset	< 100 ms in time-delay phase < 400ms
Insensitivity to power losses	< 100 ms

(1) Additional error for drop-out versions: 100 ms


The switching time is adjustable by way of two dipswitches (4- and 8-bit respectively) located on the front of the relay, which can be used to set time delays from 100 ms to 32,768 seconds (approximately 9 hours).

To determine the switching time, the first step is to adjust the intermediate scale T(s), by selecting one of the 16 available settings with the 4-bit dipswitch. The values available are given in table 1.

The value of the T(s) scale should be the next highest numerically than the value of the required switching time.

E.g. Switching time: 3,600 seconds \rightarrow intermediate scale setting: 4,096 seconds

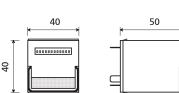
The T(s) scale is set by identifying the switches that add up to the Σ T value indicated in table 1, and positioning them at "1". Next, proceed to set the switching time by means of the 8-bit dipswitch.

8 0 0 0 0 0 0 0 0 0 0	0 0 0 1 1 1	2 position 0 1 1 0 0 0 1	1 0 1 0 1 0 1 0
0 0 0 0 0 0	0 0 0 1 1 1	0 0 1 1 0 0	1 0 1 0 1
0 0 0 0 0 0	0 0 0 1 1 1	0 1 1 0 0	1 0 1 0 1
0 0 0 0 0	0 0 1 1 1	1 1 0 0	0 1 0 1
0 0 0 0	0 1 1 1	1 0 0	1 0 1
0 0 0	1 1 1	0	0
0	1	0	1
0	1		
		1	0
0			0
0	1	1	1
1	0	0	0
1	0	0	1
1	0	1	0
1	0	1	1
1	1	0	0
1	1	0	1
	1	1	0
1			1

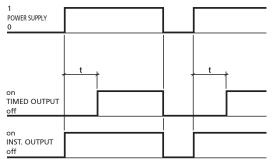
The switching time is set by identifying the 16-bit dipswitches that add up to the Σ t value, as calculated below, and positioning them at "1":

 $\Sigma t = \frac{t \times 256}{T}$ where t(s) : required switching time T(s) : full scale time set previously

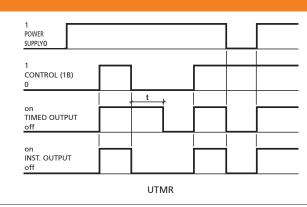
Example: relay with time delay 22 s. and full scale time 32 s.


For the full scale time of 32 s, select value 5 in the Σ T column (see table), then identify the switches corresponding to 4 and 1 (4+1=5) and position them at "1". For the delay time of 22 s, set an Σ t value of 176 (i.e. 22x256/32), then identify the switches corresponding to 128, 32 and 16 (128+32+16=176) and position them at "1".

Wiring diagram


M2 R2 R4 M4 (-) (+) (-) (+) M1 R3 M3 (+) (+) (-)

M3 - R3 = POWER SUPPLY M1 = CONTROL SIGNAL M4 - R4 = TIMED OUTPUT R2 - M2 = INSTANTANEOUS OUTPUT



Functional diagram

UTME

Sockets Number of terminals 16 For wall or rail mounting Spring clamp, wall or DIN H35 rail mounting PAIR160 Screw, wall or DIN H35 rail mounting 48BIP20-I DIN Screw, wall mounting 48BL For flush mounting Screw 43IL For mounting on PCB 65 SOCKET NUMBERING EXPLANATIONS

For more details, see specifications of mounting accessories.

Retaining clips - correspondence with	SOCKETS

Number of clips per relay		
SOCKET MODEL	CLIP MODEL	Z
For wall or rail mounting		FRONT CONNECTION
PAIR160, 48BIP20-I DIN, 48BL	RPB48	ONN
For flush mounting		0
ADF2	RPB48	
43IL ⁽¹⁾	RPB43	NOI
For mounting on PCB		SACK
65	RPB43	BACK CONNECTION

(1) Insert the clip before fastening the socket on the panel.

Mounting tips

The preferred mounting position is on the wall, with the module positioned horizontally in the reading direction on the nameplate. For correct use, modules should be spaced apart by at least 5 mm in the horizontal direction and 20 mm in the vertical direction. This is to allow correct upward dissipation of the heat generated. Set these distances according to the socket used. Distances can be reduced depending on the environmental conditions during operation, and on the relay duty cycle. For safe and secure operation, it is advisable to use retaining clips. No special maintenance is required.

TOK-L | OKRE-L | TOK-FP | OKRE-FP CLE SERIES

USER SECTORS

OKRe Series, flat head slotted screw setting control

OKRe Series, knob setting control

PRODUCT ADVANTAGES

- "L": flasher function with symmetrical output pulse, adjustable or fixed
- "FP": one-shot function, adjustable
- Wide range of time settings available
- Solid and rugged construction for heavy or intensive duty
- Long life expectancy
- Patent operating mechanism, designed to ensure high contact pressure (TOK)
- Independent and self-cleaning contacts
- Magnetic arc blow-out standard
- Excellent shock and vibration resistance
- Wide range of sockets
- Retaining clip for secure locking of relay on socket
- Transparent cover, pull-out handle
- Positive mechanical keying for relay and socket

DESCRIPTION

5 models of "FLASHER" or "ONE SHOT" logic relays are available, derived from the TOK and OKR series. The TOK-L, OKRe-L and CLE models are flasher type relays, whereas the TOK-FP and OKRe-FP models are one-shot relays. The relays in the TOK series provide higher breaking capacity and longer mechanical life expectancy than those in the OKR / CLE series.

Flasher relays: when the component is energized, the coil of the relay is piloted by an electronic circuit, delivering voltage pulses in a continuous symmetrical ON/OFF cycle. Accordingly, the contacts change status cyclically, for as long as the control voltage is applied to the circuit. These relays can be specified with an adjustable or fixed intermittence frequency; in the case of an adjustable frequency, the setting is made by way of a potentiometer having a knob type or flat head slotted screw type control.

One-shot relay: Lorsque le relais est alimenté, la bobine when the component is energized, the coil of the relay is piloted by an electronic circuit, delivering voltage pulses. Accordingly, the contacts change status instantaneously and return to the break conditions after a predetermined interval of time, even with the control voltage applied to the circuit. Relays can be provided with a pulse of adjustable duration or a pulse of fixed duration. In the case of an adjustable pulse, the setting is made by way of a potentiometer having a knob type or a flat head slotted screw type control.

Excellent electrical and mechanical performance levels allow the product to be used in the most demanding of sectors such as, for example, in electricity generating stations, electrical transformer stations, rail transport or in industries using continuous production processes (chemical and petrochemical, rolling mills, cement factories, etc.). In particular, with their notable shock and vibration resistance, they are ideal for use on rolling stock.

	Logic	Number of	Range of	Quite ut	Sett	ing control	Rolling stock
Models	Function	contacts	contacts	Output	Knob	Flat head slotted screw	application
OKRe-L		4	5A	50%ON / 50%OFF adjustable up to 1h	•	•	•
TOK-L	Flasher	4	10A	50%ON / 50%OFF adjustable up to 1h		•	•
CLE		4	5A	50%ON / 50%OFF, fixed 55 – 90 pulse/min	-	-	
OKRe-FP		4	5A	Adjustable up to 1h	•	•	•
TOK-FP	One-shot	4	10A	Adjustable up to 1h		•	•

FOR CONFIGURATION OF PRODUCT CODE, SEE "ORDERING SCHEME" TABLE

þ	Coil specifications	
	Nominal voltages Un (1)	DC: 24-36-48-72-110-125-132-144-220 AC: 24-48-110-125-220-230
	Max. consumption at Un (DC/AC)	4 W / 4 VA
	Operating range ⁽¹⁾ Rolling stock version ⁽²⁾	80115 % Un DC : 70125 % Un
	Type of duty	Continuous

(1) Other values on request.

(2) See "Ordering scheme" table for order code.

Contact specifications	CLE OKRe-L OKRe-FP	TOK-L TOK-FP			
Number and type	4 CC), form C			
Current Nominal (1)	5 A	10 A			
Maximum peak (1s) ⁽²⁾	10 A	20 A			
Maximum pulse (10ms) ⁽²⁾	100 A	150 A			
Example of electrical life expectancy $^{\scriptscriptstyle (3)}$	0.2 A – 110 Vdc – L/R 0 ms : $10^{\rm s}$ operations - 1,800 operations / hour	0.5 A – 110 Vdc – L/R 40 ms : 10 ⁵ - 1,800 operations / hour			
Minimum load Standard contacts	500 mW (20V, 20 mA)				
Gold-plated contacts P4GEO (4)	100 mW (10V, 5 mA)	200mW (20 V, 5 mA)			
Gold-plated contacts P8 (4)	50 mW (5V, 5 mA)	-			
Maximum breaking voltage	250 Vdc / 350 Vac	350 Vdc / 440 Vac			
Contact material	AgCu				

(1) Nominal current: on all contacts simultaneously, reduction of 30%.

(2) The max. peak and pulse currents are those currents that can be handled, for a specified time, by the contact. They do not refer to steady or interrupted currents.

(3) For other values, see electrical life expectancy curves.

(4) Specifications of gold-plated contacts on new relay

a) Plating material: **P4 GEO:** gold-nickel alloy (>6µ) P8: gold-cobalt alloy (>5µ), knurled contact.

b) When the gold-plated contact is subject to heavy loads, it will be degraded on the surface. In this case, the characteristics of the standard contact should be taken into consideration.

This does not impair relay operation.

Insulation	CLE OKRe-L OKRe-FP	TOK-L TOK-FP
Insulation resistance (at 500Vdc)		
between electrically independent circuits and between these circuits and ground	> 1,0	00 MΩ
between open contact parts	> 1,0	00 ΜΩ
Withstand voltage at industrial frequency		
between electrically independent circuits and between these circuits and ground	2 kV (1 min) - 2.2 kV (1 s)	2 kV (1 min) - 2.2 kV (1 s)
between open contact partss	1 kV (1 min) - 1.1 kV (1 s)	2 kV (1 min) - 2.1 kV (1 s)
Impulse withstand voltage (1.2/50µs - 0.5J)		
between electrically independent circuits and between these circuits and ground	5 kV	5 kV
between open contact parts	3 kV	5 kV

Mechanical specifications	CLE OKRe-L OKRe-FP	TOK-L TOK-FP
Mechanical life expectancy	20x10 ⁶ operations	100x10 ⁶ operations
Degree of protection (with relay mounted)	IP40	
Dimensions (mm) ⁽¹⁾	40x45x97	45x45x109
Weight (g)	~ 220	~ 300

(1) Excluding output terminals and adjuster knob, if specified.

RETAINING CLIPS

Environmental specifications	CLE OKRe-L OKRe-FP	TOK-L TOK-FP				
Operating temperature	-25 to + 55 °C					
Rolling stock version	-25 to + 70 °C -25 to + 85 °C					
Storage and transport temperature						
Relative humidity	Standard: 75% RH, Tropicalized: 95% RH					
Resistance to vibrations	5 g - 10 to 55 Hz - 1min.	5 g - 5 to 60 Hz - 1 min.				
Resistance to shock	20 g - 11 ms	30 g - 11 ms				
Fire behavior	V0					

Standards and reference values

EN 61810-1, EN 61810-2, EN 61810-7	Electromechanical elementary relays
EN 61812-1	Timer relays
EN 60695-2-10	Fire behavior
EN 61000	Electromagnetic compatibility
EN 60529	Degree of protection provided by enclosures

Unless otherwise specified, products are designed and manufactured to the requirements of the European and International standards indicated above. In accordance with EN 61810-1, all items of technical data are referred to ambient temperature 23 °C, atmospheric pressure 96kPa and 50% humidity. Tolerance for coil resistance, nominal electrical input and nominal power is ±7%.

Railways, rolling stock - Standards

EN 60077	Electric equipment for rolling stock - General service conditions and general rules
EN 50155	Electronic equipment used on rolling stock
EN 61373	Shock and vibration tests, Cat 1, Class B
EN 45545-2	Fire behavior, Cat E10, Requirement R26, V0
ASTM E162, E662	Fire behavior

Configurations - Option	S
P2	Tropicalization of coil with epoxy resin for use with 95% RH (@ T 50 °C). This treatment also protects the coil against corrosion which could occur by the combination of humidity with certain chemical agents, such as those found in acid atmospheres (typical of geothermal power stations) or saline atmospheres.
P4GEO	Gold plating of contacts with gold-nickel alloy, thickness $\ge 6\mu$. This treatment ensures long-term capacity of the contact to conduct lower currents in harsh ambient conditions such as acid atmospheres (typical of geothermal power stations) or saline atmospheres.
P5GEO	P4GEO type gold-plating, but applied to contacts, contact terminals and output terminals + P2 coil tropicalization.
P6GEO	Gold-plating of contacts, contact terminals and output terminals + P2 coil tropicalization.
P7	Silver cadmium oxide contacts.
P8	Gold plating of contacts with gold-cobalt alloy, thickness $\geq 5\mu$, knurled fixed contact. This finish allows further improvement of the performance provided by the gold-plated contact, compared to treatment P4GEO .
LED	LED indicator showing presence of power supply, wired in parallel with the coil.
FLYBACK DIODE	Polarized component connected in parallel with the coil (type 1N4007 or BYW56 for rolling stock version) designed to suppress overvoltages generated by the coil when de-energized.
TRANSIL	Non-polarized component connected in parallel with the coil. Behavior is similar to that of a varistor, with faster operating times.

CLE Ord	ering sch	eme									
Func	tion	Product code	Application ⁽¹⁾	Configuration A	A Con	figuration B	Label	Type power s		Nominal oltage (V) ⁽²⁾	Keying position ⁽³⁾
Flasher		CLE	E: Energy Railway Fixed Equipment	1: Standard	2: P 4: P 5: P	4 GEO 5 GEO 6 GEO 7	F	C: Vdc A: Vac 5 H: Vac 6	0 Hz	4 - 048 - 110 125 - 230	xxx
Exam	ple	CLE	E	1		0	F	н		125	
			CLEE10F-H	125: CLE relay, E	NERGY	' series, stan	dard co	il, nomin	al voltage 1	25Vac 60Hz	
OKRE-L / OKRE-FP Ordering scheme											
Function	Product code	Application	n ⁽¹⁾ Configuration A	Configuration B	Label	Type of power supply		ninal Je (V) ⁽²⁾	Setting control ⁽³⁾	Full scale times ⁽³⁾	, ,
Flasher	OKReL	E : Energy Railway Fixed Equipme	1: Standard 2: Diode // 3: Varistor 4: Led 5: Diode // + Led	0: Standard 2: P2 4: P4 GEO 5: P5 GEO	F	T: Vdc+ac		36 - 048 10 - 125	M = Knok	015: 1 : 055: 5 : 105: 10 155: 15 305: 30 01M: 1 m	s s s nin
		P · Poilwov	6: Varistor	6: P6 GEO	Г	C: Vdc (4)		44 - 220 20	C = Flat hea		

One-shot	OKReFP	R : Railway Rolling Stock	+ Led 7: Transil 8: Transil + Led	7: P7 8: P8			230	slotted screw	05M: 5 min 10M: 10 min 15M: 15 min 30M: 30 min 60M: 60 min	
	OKReL	R	1	2	F	С	072	М	015	
nple		OKReLR12F-C072	2-M01S: OKRe-L rela	ay, rolling stock ser	ies, P2 co	il tropicalization	, nominal voltage 72Vd	c, full scale 1 second,	knob setting control	
Exan	OKReFP	E	4	8	F	т	110	С	05M	
-	OKReFPE48	8F-C110-C05M: OKF	Re-FP relay, energy s	eries, nominal volta	age 110Vd	lc/ac, full scale 5	minutes, slotted screw s	etting control, with le	ed, P8 finish (gold-pla	ted contacts)

TOK-L / TOK-FP Ordering scheme

•••		A-IF Oldelli										
	Function	Product code	Application ⁽¹⁾	Configuration A	Configuration B	Label	Type of power supply	Nominal voltage (V) ⁽²⁾	Full scale times ⁽³⁾	Keying position ⁽³⁾	ET RING	
_	Flasher	TOK-L	E : Énergy / Railway Fixed Equipment	4: Led	0: Standard 2: P2		C: Vdc (4)	024 - 036 - 048 072 - 110 - 125	015: 1 s 025: 2 s 045: 4 s 085: 8 s 165: 16 s 325: 32 s		FRONT SOCKET NUMBERING EXPLANATIONS	
-	One-shot	TOK-FP	R : Railway Rolling Stock	4: Leo (fixed range)	4: P4 GEO 5: P5 GEO 6: P6 GEO	F	A: Vac 50 Hz H : Vac 60 Hz	132 - 144 - 220 230	01M: 1 min 02M: 2 min 04M: 4 min 08M: 8 min 16M: 16 min 32M: 32 min 64M: 64 min		- BACK CONNECTION CONN	
	[]	TOK-L	R	4	0	F	С	072	64M		0	
	Example	TOKLR40F-C072-64M: TOK-L relay, railways series, rolling stock, nominal voltage 72Vdc, full scale 64 minutes							5			
	Exar	TOK-FP	E	4	2	F	А	220	045		MOUNT	
	-	то	KFPE42F-A220-04	4S: TOK-FP relay, en	ergy series, P2 coil	tropical	ization, nominal	l voltage 220Vac, f	ull scale 4 second	ls	BMO	

(1) E = ENERGY: all applications, except for railways rolling stock.

Suitable on energy production, transport and distribution plants, railways fixed equipment, petrolchemical and heavy industry.

R = RAILWAYS, ROLLING STOCK: Application on board rolling stock (rail-tram-trolley vehicles). Electrical characteristics according to EN60077.

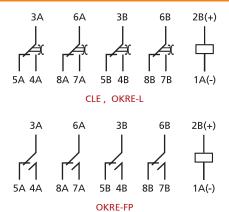
Availables also the product series:

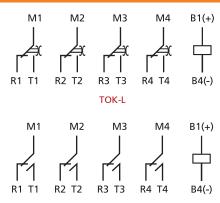
RAILWAYS, FIXED EQUIPMENT: Approved and conforming relays and products to RFI (FS Group) specification no. RFI DPRIM STF IFS TE 143 A

For the list of RFI approved and conforming products, consult dedicated catalogue "RAILWAY SERIES – RFI APPROVED".

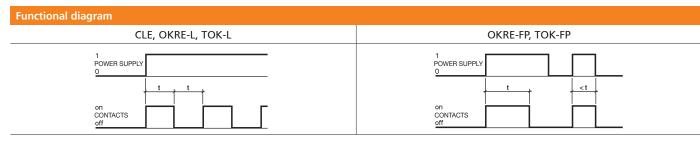
STATIONS: ENEL approved material meeting LV15/LV16 specifications.

For the list of ENEL approved and conforming products, consult the dedicated catalog "STATIONS SERIES – LV15-LV16-LV20". CLE: also available is the Stations series, with ENEL approved material meeting LV15/LV16 specifications. Consult the dedicated catalog for more information.

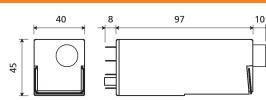

(2) Other values on request.

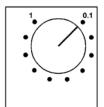

(3) Optional value. The positive mechanical keying is applied according to the manufacturer's model.

(4) Rolling Stock version, Vdc only available.



167



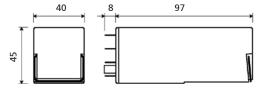


TOK-FP

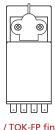
Time delay Switching time setting	OKRE-L OKRE-FP	TOK-L TOK-FP	CLE
Time setting	By way of potentiometer, with knob or flat head slotted screw control	By way of potentiometer, with flat head slotted screw control	N. J.
Full scale times available	10 ÷ 100 % of full scale	20 ÷ 100 % of full scale	No time setting
Time setting rangee	± 10 % of time delay	± 5 % of time delay	55 90
Accuracy, setting (0.81,1 Un, t=20°C)	DC : 0.5 % / AC : ± 0.5 % + 20 ms	± 5% of time delay	pulse/min
Accuracy, repeatability	DC: 0.5 % / AC :	symmetrical	
Reset	< 100ms, in time-	delay phase < 1s	

Ø 45

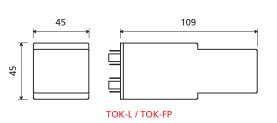
8

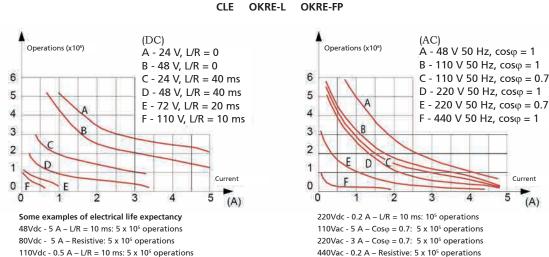

97

40


OKRE-L / OKRE-FP with knob setting control

OKRE-L / OKRE-FP with flat head slotted screw setting control





TOK-L / TOK-FP finish for **ROLLING STOCK version**

CHAUVIN ARNOUX Ð ENERG

TOK-L TOK-FP

14

12

10

8

6

4

2

02

Operations (x10⁶) رەز

2

ADF2

43IL (1)

65

4

1 : 110 V 50 Hz Cos ϕ = 0.5

2:220 V 50 Hz Cos φ = 0.5

6

CLE OKRe-L OKRe-FP

RC48

RC43

RC43

8

(DC)

Current

Double faston (4.8 × 0.8 mm)

(A)

Other examples of electrical life expectancy available on the technical data sheet of the OK series relay (OKSFC model)

10

MONOSTABLE

MONOSTABLE WI

(AC)

Current

(A)

TOK-L

clip⁽²⁾

TOK-FP

RL48 RL48 RL48

RL48

RL48

RL43

RL43

10

		C
	0	3
E	\leq	
Y	H	1
Q	m	2
	Σ	<
0,	2	

Number of terminals (standard dimensions 5x0.8mm)	16	Retainir	ıg o
For wall or rail mounting			
Spring clamp, wall or DIN H35 rail mounting	PAIR160	RC48	
Screw, wall or DIN H35 rail mounting	48BIP20-I DIN	RC48	
Screw, wall mounting	48BL	RC48	
Double faston, wall mounting	48L	RC48	

Screw

For mounting on PCB

For flush mounting

(1) Insert the clip before fastening the socket on the panel.

Operations (x10⁶)

2

48 V L/R = 0

C: 110 V L/R = 0

6

8

B:48 V L/R = 20 ms

D : 110 V L/R = 20 ms

A

4

14

12

10

8

6

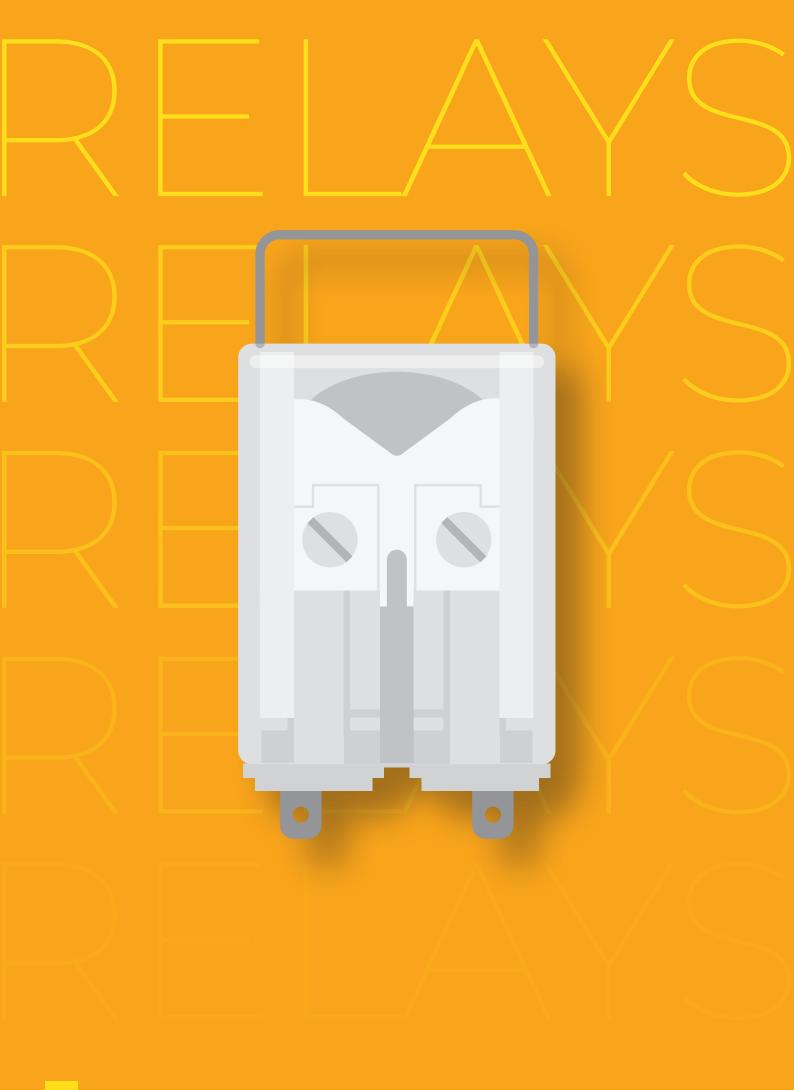
4

2

0,2

Sockets and retaining clips

(2) Assume two clips for use on rolling stock.


For more details, see specifications of mounting accessories.

Mounting tips

The preferred mounting position is on the wall, with the relay positioned horizontally in the reading direction on the nameplate. For correct use of the relays, they should be spaced apart by at least 5 mm in the horizontal direction and 20 mm in the vertical direction. This is to allow correct upward dissipation of the heat generated by the coil. Set these distances according to the socket used. Distances can be reduced depending on the environmental application conditions and on the relay duty cycle. For safe and secure operation, it is advisable to use retaining clips. No special maintenance is required.

Condensation can form inside the relay when powered up and the outside ambient temperature is cold; this is quite normal and does not affect the operation of the relay. The plastic materials of the relay do not possess hygroscopic properties.

TIME RELAYS WITH FORCIBLY GUIDED CONTACTS

MONOSTABLE INSTANTANE<u>OUS</u>

10NOSTABLE WITH FORCIBLY GUIDED

BISTABLE

SOCKET NUMBERING EXPLANATIONS

FRONT CONNECTION

BACK CONNECTION

RETAINING CLIPS

171

CHAUVIN

RGK SERIES with forcibly guided contacts

USER SECTORS

PRODUCT ADVANTAGES

- Plug-in monostable timed relay, "pick-up" or "drop-out" function
- Forcibly guided (mechanically linked) contacts, relay compliant with EN 61810-3, tipo A
- Weld-no-transfer technology
- Wide time setting range from 0.1s to more than 16 hours, great accuracy over the entire adjustment range
- Suitable for safety applications
- Operation with d.c. and/or a.c. power supply
- Self-cleaning knurled contacts
- Magnetic arc blow-out for higher breaking capacity
- Led optical indicators monitoring power supply and timer status

DESCRIPTION

The relays in the **RGK series** are highly reliable products featuring high performance, suitable for applications in very harsh and disturbed environments. They are provided with forcibly guided (mechanically linked) contacts. The component conforms to the **EN 61810-3 requirements**, type A relay (all contacts are mechanically linked). Forcibly guided contacts are also known as weld-no-transfer contacts. A typical application is the check reading of a contact for determining, with absolute certainty, the state of the other contacts in self-monitoring control system. Timing is managed by high reliability electronic, made with professional components. The electronic is immune to strong EMC interference, typical of high voltage electricity distribution stations.

Switching times ranging from 0.1s to over 16 hours, providing extreme accuracy over the entire setting range. This is made possible by the fact that the relay offers intermediate scales, which the user can select by means of rotary switches. The timing function can be set in two modes: "pick-up" or "drop-out".

The types of contacts allow obtaining remarkable performance levels both for high, very inductive loads or very low loads; the presence of the magnetic arc blow-out contributes considerably to the breaking capacity. The **knurled contacts** ensure better self-cleaning characteristics and lower **ohmic resistance** thanks to the various points of electrical connection, thereby **improving the electrical life** expectancy of the component.

In relays with forcibly guided (mechanically linked) or weldno-transfer contacts, special design and constructional measures are used to ensure that make (normally-open) contacts can not assume the same state as break (normally -closed) contacts.

• If, when powering up a relay, a NC contact fails to open, the remaining NO contacts must not close, maintaining a contact gap \geq 0.5 mm

• When the relay is de-energized, if a NO contact fails to open, the remaining NC contact must not close, maintaining a contact gap \geq 0.5 mm

EN 61810-3 defines the requirements for relays with forcibly guided contacts. This standard defines two types of relay with forcibly guided contacts:

- Type A: Relay whose contacts are all mechanically linked (forcibly guided).
- Type B: Relay containing mechanically linked contacts and contacts which are not mechanically linked.

In the case of relays that include changeover contacts, either the make circuit or the break circuit of a changeover contact can be considered to meet the requirements of this standard.

Models	Number of contacts	Magnetic arc blow-out	Function
RGK.x7X	4	•	Pick-up / Drop-out

Mechanical life expectancy 10x10⁶ operations Maximum switching rate Mechanical 3,600 operations/h Degree of protection IP40 Dimensions (mm) 45x50x112 (1) 300

(1) Excluding output terminals

0

FOR CONFIGURATION OF PRODUCT CODE, SEE "ORDERING SCHEME" TABLE

ф	Coil specifications	RGKE	RGKR	INSTA
	Nominal voltages Un	AC/DC: 24-36-48-72-96-110-125-230 ⁽¹⁾		
	Consumption at Un (DC/AC)	3.5	5W	
	Operating range	80120% Un	70125% Un	ABLE
	Type of duty	Continuous		BIST
	Drop-out voltage 2)	> 5%	% Un	

(1) Other values on request.

C

(2) Limit value for supply voltage, expressed as % of the nominal value, beneath which the relay is certainly de-energized.

Contact specificat	ions		(MO
	Number and type	4 CO, form C	
Current	Nominal ⁽¹⁾	12A	A V T T
	Maximum peak ⁽²⁾	20A for 1min - 40A for 1s	E DELAY PICK-UP
	Maximum pulse (2)	150A for 10ms	U N N
Example of elec	ctrical life expectancy (3)	1A - 110Vdc - L/R 40 ms - 10 ⁵ operations - 1,800 operations/hour	
Minimum load	Standard contacts	200 mW (10 V, 10 mA)	DED
	Gold-plated contact	50 mW (5 V, 5 mA)	
Maxin	num breaking voltage	350 VDC / 440 VAC	DELA
	Contact material	AgCdO	TIME D
Operating time at	t Un (ms) (4)	DC / AC	
Pick-up	(NC contact opening)	≤ 20	E
Pick-u	p (NO contact closing)	≤ 35	SEME
Drop-out	(NO contact opening)	≤ 10	MEASUREMENT
Drop-ou	ut (NC contact closing)	≤ 53	MEZ

(1) On all contacts simultaneously, reduction of 30%.

(2) The max. peak and pulse currents are those currents that can be handled, for a specified time, by the contact. They do not refer to steady or interrupted currents.

(3) For other examples, see electrical life expectancy curves.

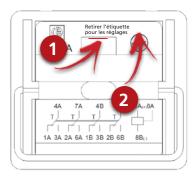
(4) Unless specified otherwise, the operating time signifies until stabilization of the contact (including bounces).

Insulation		
Insulation resistance (at 500Vdc)		
between electrically independent circuits and between these circuits and ground	> 10,000 MΩ	
between open contact parts	> 10,000 MΩ	
Withstand voltage at industrial frequency		
between electrically independent circuits and between these circuits and ground	2 kV (1 min) - 2.2 kV (1 s)	
between open contact parts	2 kV (1 min) - 2.2 kV (1 s)	
between adjacent contacts	2 kV (1 min) - 2.2 kV (1 s)	
Impulse withstand voltage (1.2/50µs - 0.5J)		
between electrically independent circuits and between these circuits and ground	5 kV	
between open contact parts	4 kV	-

Weight (g)

173

0	Environmental specifications								
-)perating tem	perature			Standard	-25 to 55°0			
-	Version for railways, rolling s			ays, rolling stock					
	Storage and shipping temperature Relative humidity					-40 to 85°C	2 75% RH - Tropicali	zed: 95% RH	
	Fire behavior				V0		200. 55 /0 MT		
Standards and reference values									
Eľ	N 61810-1, EN	I 61810-2, EN	N 61810-7,	EN 61812		Electrome	hanical elementar	y relays	
	N 61810-3, tyj	pe A				-		mechanically linked)	contacts
	N 61812-1 N 60695-2-10					Timer relay			
EN 60595-2-10 EN 60529						Fire behavior Degree of protection provided by enclosures			
Eľ	N 61000					-	, gnetic compatibilit		
In a		N 61810-1, all ite	ems of technic	al data are referre	d to ambient temperatu		he above-mentioned Eur pheric pressure 96kPa ar	opean and International stand 1 50% humidity.	indards.
R	ailways, rollir	ng stock - Sta	andards	Applica	ble to RGKR versi	on			
٤ľ	N 60077			Electric e	equipment for rollin	g stock - Gen	eral service condition	ns and general rules	
	N 50155				ic equipment used c	5	:k		
	N 61373 ⁽¹⁾ N 45545-2				nd vibration tests, Ca avior, Cat E10, Requi		V0		
	STM E162, E6	62		Fire beh					
	Permissible openii		icts on a de-er	nergized relay t<3r	ns.				
C	onfigurations	- O <u>ptions</u>							
	ROPICALIZATI		Surface t	reatment of t	he coil with prote	ctive coatin	g for use with RH 9	95%.	
							-	cobalt alloy ≥ 2µ. This t	reatment ensure
G	old plating	i			e contact to condu			, <u>-</u>	
0	Ordering scher	ne							
P	Product code	Applicat	tion ⁽¹⁾	Configuration A	Configuration B	Label	Type of power supply	Nominal voltage (V) ⁽²⁾	Finish ⁽³⁾
		E: Energy		1: Standard	7X: 4 CO contacts	s	T:) (- 1 - 1 - 1	024 - 036 - 048	T. Tasa isalian
	RGK	R: Railway,		4: Gold	with magnet	ic F	T: Vdc + Vac 50 Hz	072 - 096 - 110	T: Tropicalize coil
		Rolling St	tock	plating	arc blow-out		50112	125 - 230	con
	ENERGY: all applic				ire-rail-tramway vehicle	s). Electrical cha	racteristics according to	EN60077.	
F (2) (RAILWAYS, ROLLII Other values on re Optional value.								
F (2) ((3) (Other values on re	equest. E		1	7X	F	T	048	Т
F (2) ((3) (Other values on re Optional value.	E	RGKE	17XF-T048T =	ENERGY series st	andard relay	y and 48Vdc tropic	alized coil.	T
F (2) (Other values on re Optional value.	E		17XF-T048T = 4	ENERGY series sta 7X	andard relay	y and 48Vdc tropic T	alized coil. 110	Т
F (2) ((3) (Other values on re Optional value.	E		17XF-T048T = 4	ENERGY series sta 7X	andard relay	y and 48Vdc tropic T	alized coil.	T
Example (2) (3) (3)	Other values on re Optional value.	E R RGi	KR47XF-T1	17XF-T048T = 4 10 = ROLLING	ENERGY series sta 7X STOCK railway se	andard relay	y and 48Vdc tropic T gold-plated contac	alized coil. 110 ts and 110Vdc coil.	
Example (2) (3) (3)	Other values on re Optional value. RGK RGK	E R RGi		17XF-T048T = 4 10 = ROLLING	ENERGY series sta 7X	andard relay	y and 48Vdc tropic T gold-plated contac	alized coil. 110 ts and 110Vdc coil.	T 8A(+)
Example (2) (3) (3)	Other values on re Optional value. RGK RGK	E R RGi	KR47XF-T1	17XF-T048T = 4 10 = ROLLING 3 7B 5	ENERGY series sta 7X STOCK railway se A(+)	andard relay	y and 48Vdc tropic T gold-plated contac	alized coil. 110 ts and 110Vdc coil.	
Example (2) (3) (3)	Other values on re Optional value. RGK RGK	E R RGi	KR47XF-T1	17XF-T048T = 4 10 = ROLLING	ENERGY series sta 7X STOCK railway se A(+)	andard relay	y and 48Vdc tropic T gold-plated contac	alized coil. 110 ts and 110Vdc coil.	
Example (2) (3) (3)	Other values on re Optional value. RGK RGK	E R RGi	KR47XF-T1 7A 4E	17XF-T048T = 4 10 = ROLLING 3 7B 5	ENERGY series sta 7X STOCK railway se A(+)	andard relay	y and 48Vdc tropic T gold-plated contact 4A 7A 4	alized coil. 110 ts and 110Vdc coil.	
Example (2) (3) (3)	Other values on re Optional value. RGK RGK	RG AA	KR47XF-T1 7A 4E	17XF-T048T = 4 10 = ROLLING 3 7B 5 7B 5 7B 5 7B 5 7B 5 7B 5 7B 5 7B 5	ENERGY series sta 7X STOCK railway se A(+)	andard relay F eries relay, g	y and 48Vdc tropic T gold-plated contact 4A 7A 4	alized coil. 110 ts and 110Vdc coil. B 7B 5A(+)	
Example (3) (3) (4) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5	Other values on re Optional value. RGK RGK	R RG 4A 1A 3A 2A	KR47XF-T1 7A 4E	17XF-T048T = 4 10 = ROLLING 3 7B 5 7B 5 7B 5 7B 5 7B 5 7B 5 7B 5 7B 5	ENERGY series sta 7X STOCK railway se A(+)	andard relay F eries relay, g	y and 48Vdc tropic T gold-plated contact 4A 7A 4	alized coil. 110 ts and 110Vdc coil. B 7B 5A(+) 3B 2B 6B 8B(-)	
Example (3) (3) (4) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5	Other values on re Optional value. RGK RGK Viring diagram	R RG 4A 1A 3A 2A	KR47XF-T1 7A 4E	17XF-T048T = 4 10 = ROLLING 3 7B 5 7B 5 7B 5 7B 5 7B 5 7B 5 7B 5 7B 5	ENERGY series sta 7X STOCK railway se A(+)	andard relay F eries relay, g	y and 48Vdc tropic T gold-plated contact 4A 7A 4 J J 3A 2A 6A 1B 3 Dro	alized coil. 110 ts and 110Vdc coil. B 7B 5A(+) 3B 2B 6B 8B(-)	
Example (3) (3) (4) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5	Other values on re Optional value. RGK RGK Viring diagram	E RGI n 4A 1A 3A 2A gram	KR47XF-T1 7A 4E	17XF-T048T = 4 10 = ROLLING 3 7B 5 7B 5 7B 5 7B 5 7B 5 7B 5 7B 5 7B 5	ENERGY series sta 7X STOCK railway se A(+)	andard relay F eries relay, g 1A	y and 48Vdc tropic T gold-plated contact 4A 7A 4 J 3A 2A 6A 1B 3 Drop	alized coil. 110 ts and 110Vdc coil. B 7B 5A(+) 3B 2B 6B 8B(-)	
Example (3) (3) (4) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5	Other values on re Optional value. RGK RGK Viring diagram	E RGI n 4A 1A 3A 2A gram	KR47XF-T1 7A 4E	17XF-T048T = 4 10 = ROLLING 3 7B 5 7B 5 7B 5 7B 5 7B 5 7B 5 7B 5 7B 5	ENERGY series sta 7X STOCK railway se A(+)	andard relay F eries relay, g 1A	y and 48Vdc tropic T gold-plated contact 4A 7A 4 J J 3A 2A 6A 1B 3 Dro	alized coil. 110 ts and 110Vdc coil. B 7B 5A(+) B 2B 6B 8B(-) p-out diagram	
Example (3) (3) (4) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5	Other values on re Optional value. RGK RGK Viring diagram	E RGI n 4A 1A 3A 2A gram E SUPPLY	KR47XF-T1 7A 4E	17XF-T048T = 4 10 = ROLLING 3 7B 5 7B 5 7B 5 7B 5 7B 5 7B 5 7B 5 7B 5	ENERGY series sta 7X STOCK railway se A(+)	andard relay F eries relay, g 1A	y and 48Vdc tropic T gold-plated contact 4A 7A 4 J 3A 2A 6A 1B 3 Drop ER 1TROL (8A)	alized coil. 110 ts and 110Vdc coil. B 7B 5A(+) 3B 2B 6B 8B(-)	
Example (3) (3) (4) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5	Other values on re Optional value. RGK RGK Viring diagram	E RGI n 4A 1A 3A 2A gram	KR47XF-T1 7A 4E	17XF-T048T = 4 10 = ROLLING 3 7B 5 7B 5 7B 5 7B 5 7B 5 7B 5 7B 5 7B 5	ENERGY series sta 7X STOCK railway se A(+)	andard relay F eries relay, g 1A	y and 48Vdc tropic T gold-plated contact 4A 7A 4 J 3A 2A 6A 1B 3 Drop	alized coil. 110 ts and 110Vdc coil. B 7B 5A(+) B 2B 6B 8B(-) p-out diagram	
Example (3) (3) (4) (5) (5) (5) (5) (5) (5) (5) (5) (5) (5	Other values on re Optional value. RGK RGK Viring diagram	E RGI n 4A 1A 3A 2A gram E SUPPLY	KR47XF-T1 7A 4E	17XF-T048T = 4 10 = ROLLING 3 7B 5 4 3 2B 6B 8 iagram	ENERGY series sta 7X STOCK railway se A(+)	andard relay F eries relay, g 1A 1A 1A	Y and 48Vdc tropic T Jold-plated contact 4A 7A 4 J J 3A 2A 6A 1B 3 Drop 1TROL (8A)	alized coil. 110 ts and 110Vdc coil. B 7B 5A(+) B 2B 6B 8B(-) p-out diagram	



Time delay - Switching time setting		
Time setting	By means of DIP switches and selectors	
Time setting range	100 ms 990 min	
Intermediate scales	6 (0.99 - 9.9 - 99 - 990 seconds / 99 - 990 minutes)	
Resolution of switching time setting	1/100 of selected scale	
Operating accuracy (0.81.1 Un, t=20°C) ⁽¹⁾	\pm 3 % at the beginning of scale - ± 0.5 % at full scale time	
Accuracy, repeatability	± 2 %	
Reset	< 200 ms	
Insensitivity to voltage drops	< 100 ms	
Indication	Red led = presence of power supply Green led = status of relay outputs (lights up with relay energized)	

(1) Additional error for drop-out versions: 100 ms

Time lag and function are set through a 4-bit DIP switch and two rotary selectors located on the front of the relay (see "FRONT"). These are accessible by removing the relay identification plate.

SETTINGS - Removing the plate

SETTINGS – Time lag and function

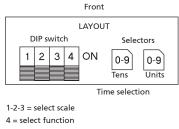
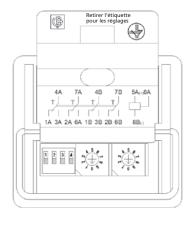



Plate is placed on the front of the cover.

To remove the plate:

- 1. Slightly lift the plate, by acting on the point shown in picture
- 2. Push upwards the plate.

Scales / Setting range			S	witch positio	n
Min	Max	Unit of measure 1 2		2	3
10	99	Hundredths (0.01s)	OFF	ON	OFF
1	99	Tenths (0.1s)	OFF	ON	ON
1	99	Seconds	ON	OFF	OFF
1	99	Seconds x 10	ON	OFF	ON
1	99	Minutes	ON	ON	OFF
1	99	Minutes × 10	ON	ON	ON
T.I.I. 4					

Table 1

Function : acts on DIP switch no. 4.

- OFF: Pick-up function
- ON: Drop-out function

Time lag :

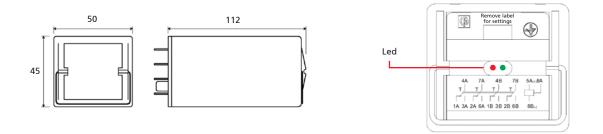
Settings are possible from 100 ms up to 990 minutes.

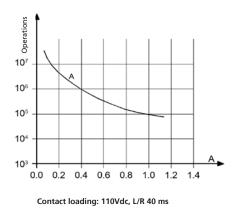
1. Selects the RANGE: acts on DIP switch no. 1, 2, 3.

2. Selects the TIME LAG: acts on rotary selectors

<u>Selects the RANGE</u>: 6 ranges are available. Move DIP switches 1, 2, 3 to "ON" or "OFF" position to obtain the desired range, as shown in TABLE 1. The range should be the next higher than the value of the required time lag. E.g. Time lag: 1'14" = 74 seconds. Closest range: 99 seconds.

Selects the TIME LAG: time lag could be set by step of 1% of the selected range. Move rotary selectors to obtain the desired time. E.g. Time lag: 1'14" = 74 seconds. "TENS" selector on "7" + "UNIT" selector on "4".




PCB MOUNT

BACK CONNECTION

175

U I (A) L/R (ms) Operations 24 Vdc 0 7,000,000 1 24 Vdc 1 40 3,000,000 24 Vdc 2 40 2,000,000 24 Vdc 5 0 3,000,000 24 Vdc 5 40 200,000 24 Vdc 9 0 800,000 48 Vdc 5 20 200,000 110Vdc 0.4 40 1,000,000 110 Vdc 40 100,000 1 110 Vdc 10 0 100,000 U I (A) Operations cosφ 220 Vac 5 0.5 100,000 10 100,000 220 Vac 1 230 Vac 07 2,500,000 1 230 Vac 3 1,200,000 0.7

Some examples of electrical life expectancy

Sockets and retaining clips			
Type of installation	Type of outputs	Model	Retaining clip
Wall or DIN rail mounting	Screw	48BIP20-I DIN	RGL48
	Spring clamp	PAIR160	NGL40
Flush mounting	Spring clamp	PRIR160	RGL48
	Double faston (4.8 × 0.8 mm)	ADF2	NGL40

The preferred mounting position is on the wall, with the relay positioned horizontally in the reading direction on the nameplate.

For correct use of the relays, they should be spaced apart by at least 5 mm in the horizontal direction and 20 mm in the vertical direction. This is to allow correct upward dissipation of the heat generated by the coil. Set these distances according to the socket used. Distances can be reduced depending on the environmental application conditions and on the relay duty cycle.

For maximum reliability in operation, it is advisable to use retaining clips.

No special maintenance is required.

Condensation can form inside the relay when powered up and the outside ambient temperature is cold; this is quite normal and does not affect the operation of the relay. The plastic materials of the relay do not possess hygroscopic properties.

Notes

Notes	MONOSTABLE
	INSTANTANEOUS MONOSTABLE WITH FORCIBLY GUIDED
	BISTABLE
	FAST-ACTING (MONOST/ABLE AND BISTABLE)
	TIME DELAY (ON PICK-UP
	TIME DELAY WITH FORCIBLY GUIDED
	MEASUREMENT
	Socket NUMBERING EXPLANATIONS
	CONNECTION CONNECTION
	BACK
	bCB MOUNT
	RETAINING CLIPS

KEYING

MEASURING RELAYS

INSTANTANEOUS MONOSTABLE WITH FORCIBLY GUIDED

> FAST-ACTINC (MONOSTABLE AND BISTABLE)

BISTABLE

NIME DELAY ON PICK-UP DROP-OUT)

TIME DELAY WIL FORCIBLY GUIDE CONTACTS

IEASUREMENT

SOCKET NUMBERING EXPLANATIONS

FRONT

MOK-V2 SERIES

USER SECTORS

PRODUCT ADVANTAGES

- MOK-V2 voltage threshold relay
- Pick-up and drop-out thresholds adjustable by way of two independent potentiometers
- Electronic circuit requiring no auxiliary power supply
- Solid and rugged construction for heavy or intensive duty
- Long life expectancy
- Excellent shock and vibration resistance
- Wide range of sockets
- Retaining clip for secure locking of relay on socket
- Positive mechanical keying for relay and socket

DESCRIPTION

The products in the **MOK series** are measuring relays with adjustable hysteresis. The device measures an electrical quantity (voltage or current, depending on the model) registering in a monitored circuit; the contacts switch to 'make' status when this same quantity exceeds the pick-up threshold, selected by the user and expressed as a percentage of the nominal voltage/current.

The relay reverts to 'break' status when the measured quantity drops below the drop-out threshold (also selected by the user), expressed as a percentage of the pick-up threshold. These models are suitable for the supervision and protection of electrical equipment used in the most demanding of sectors such as, for example, electricity generating stations, electrical transformer stations, industries using continuous production processes, and railways - fixed equipment and rolling stock alike.

MOK-V2 voltage threshold relay

The MOK-V2 is a measuring relay with two adjustable voltage thresholds: Pick-up voltage and Drop-out voltage. The setting, which is made by way of the potentiometers located on the top of the relay, pilots an electronic circuit that does not require an auxiliary power supply. The PICK-UP VOLTAGE can be set at between 60% and 120% of nominal voltage. The DROP-OUT VOLTAGE can be set at between 70% and 98% of the pick-up voltage. The MOK-V2 model is equipped with two change-over contacts rated 8A. In the case of the direct current version, the relay is equipped with a polarization diode that protects the circuits against an accidental inversion of polarities. Particularly suitable for monitoring battery voltages in the rail-tram-trolley vehicles sector.

Models	Function	Threshol	d setting	Number of contacts	Rolling stock appli- cation	SONOM
		Pick-up	Drop-out			Ţ
MOK-V2	Voltage threshold relay	•	•	2	•	OUS

Coil specifications		
Nominal voltages Un	DC: 24-48-36-72-110-125-132-144-220 AC: 24-48-110-125-220 (1)	
Max. consumption at Un (DC/AC)	3.5 W / 4 VA	
Maximum operating range	130% Un for 1 min.	
Type of duty	Continuous	
) Other values on request.		
Operating thresholds		
Setting	By potentiometer, with flat head slotted screw	
Selectable ranges	-	
Pick-up threshold	V (i) = 60% - 120% Un	
Drop-out threshold	V (r) 70% - 98% V(i)	
Accuracy, setting (t=20°C)	± 1.5% Un	
Additional error (-40°C, +70°C)	+1% Un	
Accuracy, repeatability	1%	
Front	80 60 120 98 70 PICK-UP Vi = % Vn MOK voltage monitoring relay	
Functional diagram	V VI VR VI = 60+120% Vn VR = 70+98% V1 CONTACTS CONT	
	off	

	Number and type	2 CO, form C	
Current	Nominal ⁽¹⁾	8 A	
Example of elec	ctrical life expectancy ⁽²⁾	8 A – 250 Vac – $\cos\varphi = 1 : 10^5$ operations 0.2 A – 110 Vdc – L/R = 40 ms : 10 ⁵ operations	
	Minimum load	100 mW (10 V, 5 mA)	
Max	imum breaking voltage	150 Vdc / 400 Vac	
	Contact material	AgSnO	
Operating time a	it Un (ms)	Pick-up (NO contact closing): ≤100 ms Drop-out (NC contact closing): ≤30 ms	

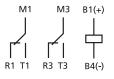
Nominal current: on all contacts simultaneously.
 450 operations/hour.

KEYING

Insulation	
Insulation resistance (at 500Vdc)	
between electrically independent circuits and between these circuits and ground	> 1,000 MΩ
between open contact parts	> 1,000 MΩ
Withstand voltage at industrial frequency	
between electrically independent circuits and between these circuits and ground	2 kV (1 min) - 2.2 kV (1 s)
between open contact parts	1 kV (1 min) - 1.1 kV (1 s)
Impulse withstand voltage (1.2/50µs - 0.5J)	
between electrically independent circuits and between these circuits and ground	5 kV
between open contact parts	3 kV

O	Mechanical specifications	
	Mechanical life expectancy	10x10 ⁶ operations
	Degree of protection (with relay mounted)	IP40
	Dimensions (mm) (1)	48x48x118.5
	Weight (g)	~ 180

(1) Excluding output terminals and adjuster knob, if specified.


Revironmental specifications					
	-25 to +55 °C				
Rolling stock version	-25 to +70 °C				
	-50 to +85 °C				
	Standard: 75% RH, Tropicalized: 95% RH				
	5g - 10 to 55 Hz - 1min.				
	20g - 11ms				
	V0 - to EN 60695-2-10				
	Rolling stock version	Rolling stock version -25 to +70 °C -50 to +85 °C Standard: 75% RH, Tropicalized: 95% RH 5g - 10 to 55 Hz - 1min. 20g - 11ms			

Standards and reference values	
EN 61810-1, EN 61810-2, EN 61810-7 EN 60695-2-10 EN 61000 EN 60529	Electromechanical elementary relays Fire behavior Electromagnetic compatibility Degree of protection provided by enclosures

Unless otherwise specified, the products are designed and manufactured according to the requirements of the above-mentioned European and International standards. In accordance with EN 61810-1, all items of technical data are referred to ambient temperature 23 °C, atmospheric pressure 96kPa and 50% humidity.

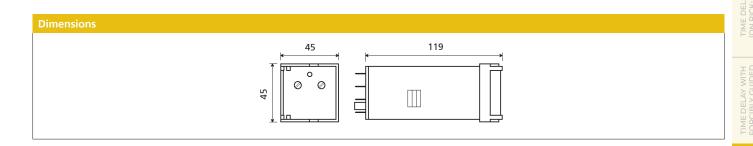
💂 Railways, rolling stock - Standards					
EN 60077 EN 50155	Electric equipment for rolling stock - General service conditions and general rules Electronic equipment used on rolling stock				
EN 61373	Shock and vibration tests, Cat 1, Class B				
EN 45545-2 ASTM E162, E662	Fire behavior, Cat E10, Requirement R26, V0 Fire behavior				

Configurations - Options	
P2	Tropicalization of coil with epoxy resin for use with 95% RH (@ T 50 °C). This treatment also protects the coil against corrosion which could occur by the combination of humidity with certain chemical agents, such as those found in acid or saline atmospheres.
LOW TEMPERATURE	against corrosion which could occur by the combination of humidity with certain chemical agents, such as

Selection of the range is made by connecting to the respective terminal.

Product code	Application ⁽¹⁾	Configuration A	Configuration B	Label	Type of power supply	Nominal voltage (V) ⁽²⁾	Keying position ⁽³⁾ / Options
MOK-V2	E: Energy Railway Fixed Equipment R: Railway Rolling Stock	1: Standard (fixed range)	0: Standard 2: P2	F	C: Vdc ⁽⁴⁾ A: Vac 50 Hz	024 - 036 - 048 072 - 110 - 125 128 - 132 - 144 220 - 230	XXX L = low temperature
MOKV2	R	1	2	F	C	024	

(1) E = ENERGY: all applications, except for railways rolling stock.


Suitable on energy production, transport and distribution plants, railways fixed equipment, petrolchemical and heavy industry.

R = RAILWAYS, ROLLING STOCK: Application on board rolling stock (rail-tram-trolley vehicles). Electrical characteristics according to EN60077.

(2) Other values on request.

(3) Optional value. The positive mechanical keying is applied according to the manufacturer's model.

(4) Railways and Rolling Stock version, Vdc only available.

Sockets and retaining clips		
Number of terminals (standard dimensions 5x0.8mm)	16	Retaining clip (2)
For wall or rail mounting		
Spring clamp, wall or DIN H35 rail mounting	PAIR160	RM48
Screw, wall or DIN H35 rail mounting	48BIP20-I DIN	RM48
Screw, wall mounting	48BL	RM48
Double faston, wall mounting	48L	RM48
For flush mounting		
Double faston (4.8 × 0.8 mm)	ADF2	RM48
Screw	43IL (1)	RM43
For mounting on PCB	65	RM43

(1) Insert the clip before fastening the socket on the panel.

(2) Assume two clips for use on rolling stock.

For more details, see specifications of mounting accessories.

Mounting tips

The preferred mounting position is on the wall, with the relay positioned horizontally in the reading direction on the nameplate. For correct use of the relays, they should be spaced apart by at least 5 mm in the horizontal direction and 20 mm in the vertical direction. This is to allow correct upward dissipation of the heat generated by the coil. Set these distances according to the socket used. Distances can be reduced depending on the environmental application conditions and on the relay duty cycle.

For safe and secure operation, it is advisable to use retaining clips.

No special maintenance is required.

Condensation can form inside the relay when powered up and the outside ambient temperature is cold; this is quite normal and does not affect the operation of the relay. The plastic materials of the relay do not possess hygroscopic properties.

CHAUVIN ARNOUX

BACK

SOCKETS

EXPLANATION OF SOCKET NUMBERING	6
FRONT CONNECTION P. 16	8
FRONT CONNECTION WITH SPRING CLAMP P. 16	8
FRONT CONNECTION WITH SCREW P. 17	0
FRONT CONNECTION WITH SINGLE FASTON P. 17	9
REAR CONNECTION P. 18	0
REAR CONNECTION WITH SPRING CLAMP P. 18	0
REAR CONNECTION WITH SCREW P. 18	4
REAR CONNECTION WITH SINGLE FASTON P. 19	1
REAR CONNECTION WITH DOUBLE FASTON P. 19	2
REAR CONNECTION WITH BLADE P. 20	00
REAR CONNECTION WITH DOUBLE BLADE P. 20	01
MOUNTING ON PCB)2

BISTABLE FC

FAST-ACTING (MONOSTABLE AND BISTABLE

> TIME DELAY (ON PICK-UP DEOP-OUT

> > ME DEEM VII DRCIBLY GUIDI CONTACTS

MEASUREME

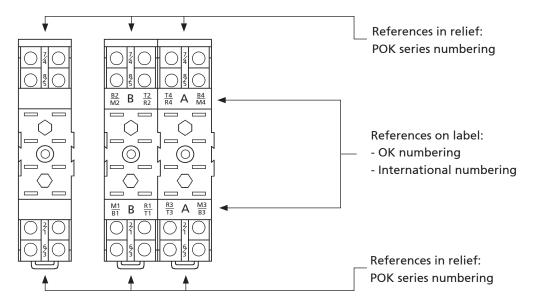
SOCKET NUMBERING EXPLANATIONS

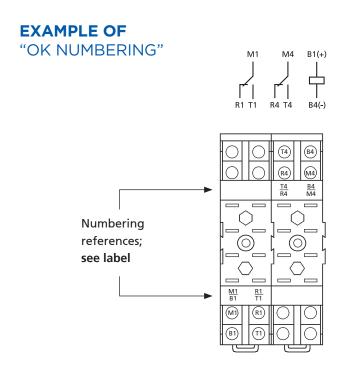
> FRONT CONNECTION

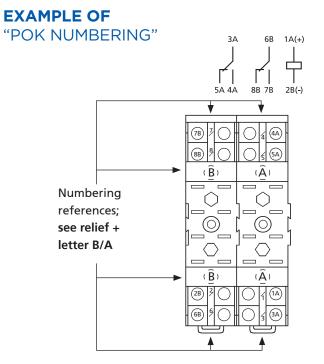
BACK CONNECTION

PCB MOUNT

RETAINING CL


185


CHAUVIN ARNOUX • The elays in the "ENERGY" and "RAILWAY Rolling Stock" series have 2 types of numbering.


Specifications	Specifications Models	Example
OK numbering	OK, OKS, OKFC, OKSFC, OKSCD, OKSGcCd, OKUIC, OKBA, TOK, OKPh, MOK, UTM	M1 M2 M3 M4 B1(+)
POK numbering	POK/POKS, BIPOK/BIPOKS, TRIPOK/TRIPOKS, TM, OKT, OKR RCG, RDG, RGG	3A 6A 3B 6B 1A(+)

QUADRIPOKS and ESAPOKS models are identified by international numbering.

• Sockets with more than 8 terminals carry both types of numbering (with the exception of the ADF series).

Notes

																								-
																							SUC	MONOSTABLE WITH FORCIBLY GUIDED CONTACTS
																							ANEC	BLE V GUIT
																							TANT,	CIBLY
										-							-		+	+	-		SNI	FORC
									 	-	\vdash								+	+	-	\neg		~
			_							-							-		+	+	-			ш
\vdash			_																+	+	-			BISTABLE
			-						 	-	\vdash						+		+	+	+	\neg		BISI
-			_								\vdash						+	-	+	+	-			
-			_						 	-									+	-				
			_						 	<u> </u>									-	-			DNIL	(MONOSTABLE AND BISTABLE)
									 	<u> </u>								 	+	-			T-AC	NOST
										-								 	+	-			FAS	(MOI AND
-										<u> </u>								 	+	\rightarrow	_	_		
			_							<u> </u>								 	\rightarrow					ъĒ
-										<u> </u>								 	+				ELAN	OR DROP-OUT)
										<u> </u>								 	\rightarrow	\rightarrow	_		D M M	N PIC
									 	<u> </u>								 	\rightarrow	\rightarrow	_		F	0 8
									 	<u> </u>									\rightarrow	\rightarrow	-+			
									 	<u> </u>								 	\rightarrow				NITH	FORCIBLY GUIDED CONTACTS
									 	<u> </u>									\square				LAV V	Y OU
									 														ΕDΕ	CIBL
																							Σ	- OF A OF
																								1ENT
																								JREN
																								MEASUREMENT
																								Σ
																								S
																							t	NUMBERING
																							OCK OCK	ANA
																							0	NUI
																			—					z
																			\neg	1			ł.	FRONT CONNECTION
									 										-					PRC NNE
																			-					
			_						 										-	-				
			_						 	-									-					ZO
			_						 	-								 	+	-	-		Ì	BACK CONNECTION
									 										-	-				ONN B
-			_						 										+	-+		_		
																			-	-				
										<u> </u>								 	+	\rightarrow				LND
										<u> </u>								 	\rightarrow	\rightarrow				PCB MOUNT
-										<u> </u>	<u> </u>	!						 	\rightarrow	\rightarrow	\rightarrow			РСП
									 	<u> </u>									\rightarrow	\rightarrow	-+			
									 	<u> </u>									-+					S
									 	<u> </u>									\square	\rightarrow	\square			CLL
										<u> </u>							$ \rightarrow$		\square	\downarrow	\square			RETAINING CLIPS
									 															RETA

187

SOCKETS PAIR080 | PAIR160 | PAIR240 | PAIR320 | PAIR480

CONNECTION FRONT

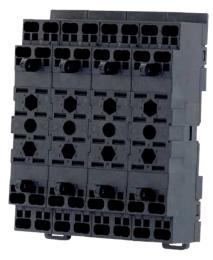
TERMINAL TYPE SPRING CLAMP

MOUNTING PANEL / DIN RAIL

PRODUCT ADVANTAGES .

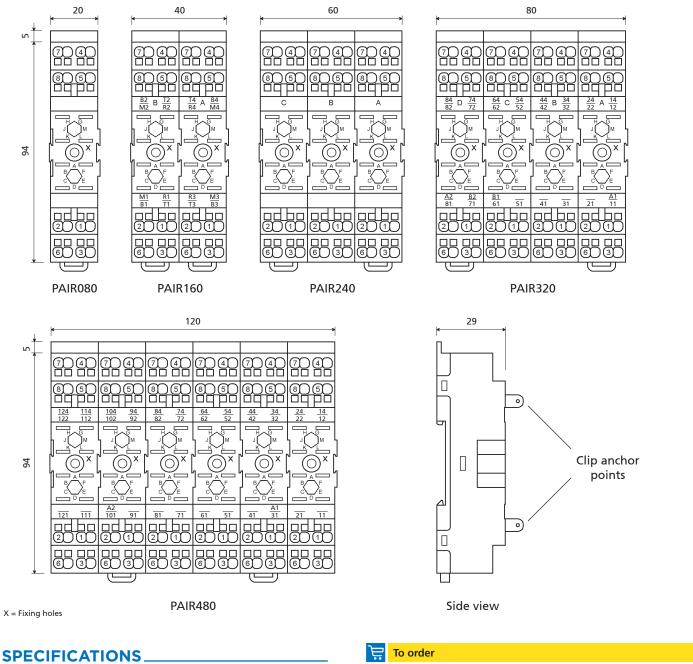
- Cable secured with spring clamp mechanism
- Insertion of lug with no need for tools
- Quick and easy wiring, saving more than half the time taken with conventional wiring
- Mounting to panel and 35mm DIN rail
- Excellent contact pressure on relay terminals

- Sturdy construction, no internal soldering
- Compatible with cable up to 2.5mm², bare (flexible or rigid) and with lug; 2 inputs per terminal
- Provision for fitment of keying pins
- Provision for fitment of retaining clip
- Protection IP20


PAIR080

PAIR160

PAIR240



PAIR320

PAIR480

Weight: 62 / 124 / 186 / 248 / 370 g Operating temperature: -50 °C...+70 °C Storage temperature: -50 °C...+85 °C Panel mounting: • ø holes: 3.2 mm • center distance between adjacent holes: 20 mm Mounting to Omega support: H35 selon normes DIN 46277/3 - EN 60715 Degree of protection: IP20 Dielectric strength: 2.5 kV 50 Hz 1 min Fire resistance: EN60695-2-1, UL94 - V0, EN45545-2, NFPA130 Standards: EN60255, EN60947, EN 61810, EN61373 Terminal type: spring clamp Inputs for each relay terminal: 2 Minimum section of cable: • cable without lug: 1 mm² • cable with lug: 0.5 mm² Maximum section of cable: 2.5 mm² Wire stripping length, mm: 10 mm ± 0.5 mm Length of lug: 12 mm Wiring with rigid cables or lug: pressure grip Wiring with flexible cables, extraction of cables: using screwdriver type tool with slim shaft and slotted head measuring 2.5mm x 0.4mm, inserted perpendicularly to the socket.

 lo order	
PAIR080	P01 4003 55
PAIR160	P01 4003 56
PAIR240	P01 4003 57
PAIR320	P01 4003 58
PAIR480	P01 4003 64

FRONT CONNECTION

MONOSTABLE ISTANTANEOU

189

SOCKETS 50IP20-I DIN 48BIP20-I DIN 78BIP20-I DIN 96IP20-I DIN 156IP20-I DIN 156IP20-I DIN

CONNECTION TERMINAL TYPE MOUNTING
FRONT SCREW PANEL / DIN RAIL

PRODUCT ADVANTAGES

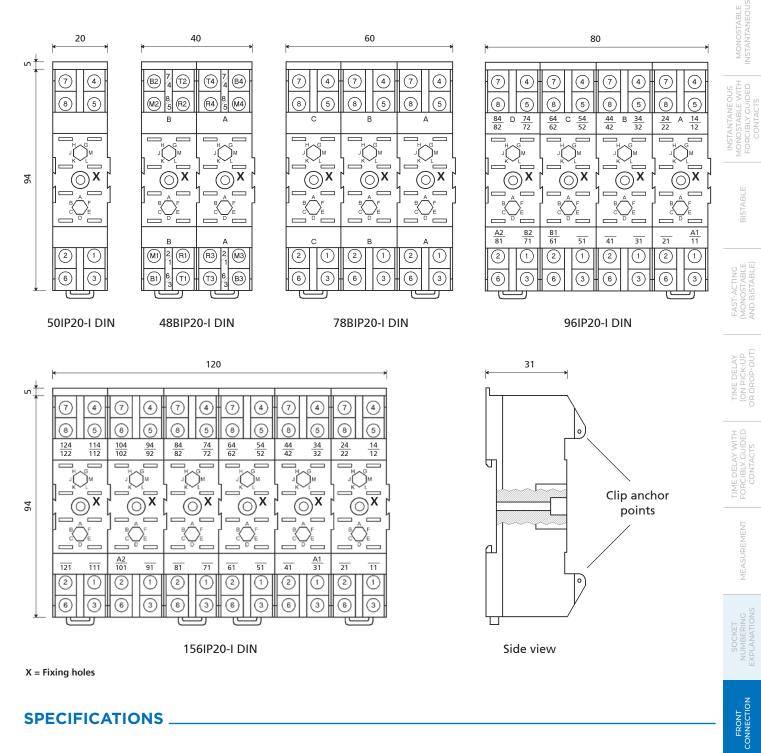
- Cable secured with screws
- Mounting to panel and 35mm DIN rail
- Sturdy construction
- Excellent contact pressure on relay terminals
- No internal soldering

- Inputs for maximum section 2.5 mm²
- Provision for fitment of keying pins
- Provision for fitment of retaining clip
- Protection IP20

50IP20-I DIN

48BIP20-I DIN

78BIP20-I DIN



96IP20-I DIN

156IP20-I DIN

Weight: 70 / 140 / 210 / 280 / 415 g Operating temperature: -50 °C...+70 °C Storage temperature: -50 °C...+85 °C Panel mounting:

• ø holes: 4.2mm

• center distance between adjacent holes: 20mm Degree of protection: IP20 Dielectric strength: 2,5 kV 50 Hz 1 min

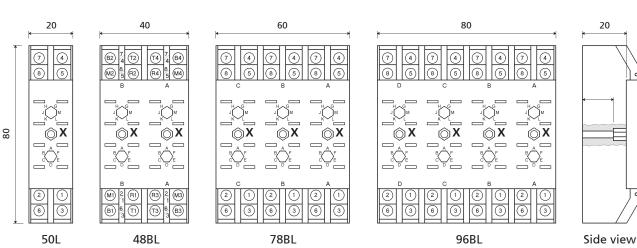
📜 To order	
50IP20-I DIN	P01 4002 33
48IP20-I DIN	P01 4002 34
78IP20-I DIN	P01 4002 35
96IP20-I DIN	P01 4002 36
156IP20-I DIN	P01 4002 37

Mounting to Omega support: H35 to DIN 46277/3 - EN 60715 standards Type and size of screw: M3 thread, cross head Tightening torque: 0.5 ... 0.6 Nm Width of slot: 6.9 mm Maximum section of cable: 2 × 2.5 mm² Fire resistance: EN 60695-2-1, UL94 - V0, EN 45545-2, NFPA130 Standards: EN 60255, EN 60947, EN 61810, EN 61373

191

PRODUCT ADVANTAGES .

- Cable secured with removable screws
- Panel mounting
- Sturdy construction
- Excellent contact pressure on relay terminals
- No internal soldering
- Inputs for maximum section 2.5 mm²
- Provision for fitment of keying pins
- · Provision for fitment of retaining clip
- Protection IP10



48BL

78BL

Clip anchor

points

X = Fixing holes

SPECIFICATIONS ____

Weight: 36 / 72 / 108 / 144 g Operating temperature: -25 °C...+70 °C Storage temperature: -40 °C...+85 °C Panel mounting: • ø holes: 4.2mm • center distance between adjacent holes: 20mm Degree of protection: IP10 Dielectric strength: 2,5 kV 50 Hz 1 min Type and size of screw: M3 thread, cross head Removable screw for use with eyelet terminals Tightening torgue: 0.5...0.8 Nm Width of slot: 7.1 mm Maximum section of cable: 2 × 2.5 mm² Fire resistance: EN 60695-2-1, UL94 - V0, EN 45545-2, NFPA130 Standards: EN 60255, EN 60947, EN 61810, EN 61373

To order 50L P01 4002 10 48BL P01 4002 04 78BL P01 4002 07 96BL P01 4002 03

Notes

																									INSTANTANEOUS MONOSTABLE WITH
																									ANEC
																								\square	
																									SNI NON
																									щ
													 												BISTABLE
																									BIS
																									ш
																 							—	$\left - \right $	FAST-ACTING (MONOSTABLE
													 										<u> </u>		ST-AC NOST
													 			 			_	 			-	$\left - \right $	FAS (MO
						-					-								_					$\left - \right $	> □
													 			 	 	 		 				$\left - \right $	DELA CK-U
	-	-			-			-		-													-	\vdash	TIME DELAY (ON PICK-UP
													 				 	 	 	 			<u> </u>	$\left - \right $	μQ
													 				 	 		 				$\left - \right $	т 0
													 										<u> </u>	$\left - \right $	TIME DELAY WITH FORCIBLY GUIDED
																	 	 	 _	 			<u> </u>	$\left - \right $	ELAY ELAY
													 				 	 	 	 			<u> </u>		AE DE RCIB
																 	 	 		 			<u> </u>		É C
													 				 		 	 			<u> </u>		-
																		 		 			├		MEASUREMENT
																	 	 		 			<u> </u>		SURE
																				 			<u> </u>		MEAS
																	 			 			<u> </u>		
																	 	 		 			<u> </u>		
																				 			<u> </u>		KET
																				 			<u> </u>		SOCKET NUMBERING
																				 			<u> </u>		z
																									FRONT
																									E A
																									FRONT
																									BACK
																									BA
																								\square	E
						1																			L,
													 											\vdash	PCB MOUNT
													 											\vdash	CB N
																								$\left - \right $	
			I				L	I															Ĺ		1

193

SOCKETS PAVC081 | PAVD161 | PAVG161 FOR C, D & C SERIES RELAYS CONNECTION **TERMINAL TYPE** MOUNTING FRONT SCREW PANEL / DIN RAIL **PRODUCT ADVANTAGES** Cable secured with screws • Mounting to panel and 35mm DIN rail Sturdy construction No internal soldering Provision for fitment of keying pins · Provision for fitment of retaining clip Snap-in relay (PAVC,0 PAVC081 PAVD161 PAVG161 20 40 33 10 æ æ G Æ Ð Ð 1 C 21 Holes for PAVC081 PAVD161 8 panel mounting ſ 21 0 🗖 0 П П Ø 3.5 Ð Ð æ 56 33 $(\mathbb{A})^{21}$ Ð æ \oplus 23.5 23.5 (f)Â Ð \oplus ⇔−A 2 ¦φc D. () Holes for PAVG161 8 'nп \square panel mounting 2 ≫— В Ο Πl ø 3.5 Ð A

SPECIFICATIONS

Weight: 51 / 100 / 117 g Operating temperature: -25 °C...+55 °C Storage temperature: -40 °C...+70 °C Panel mounting: • ø holes: 5.5 mm Mounting to Omega support: H35 to DIN 46277/3 - EN 60715 standards Degree of protection: IP20 Dielectric strength: 2,5 kV 50 Hz 1 min Type and size of screw: M3 thread, cross head Tightening torque: 0.5...0.8 Nm Width of slot: 7,1 mm / 7,3 pour PAVG161 Maximum section of cable: 2 × 2.5 mm² Fire resistance: EN 60695-2-1, UL94 - V0 Standards: EN 60255, EN 61810

Ë	To order	
	PAVC081	P01 4003 01
	PAVD161	P01 4003 04
	PAVG161	P01 4003 17

Notes

																									INSTANTANEOUS MONOSTABLE WITH
																									ANEC
																								\square	
																									SNI NON
																									щ
													 												BISTABLE
																									BIS
																									ш
																 							—	$\left - \right $	FAST-ACTING (MONOSTABLE
													 										<u> </u>		ST-AC NOST
													 						_	 			-	$\left - \right $	FAS (MO
						-													_					$\left - \right $	> □
													 			 	 	 		 				$\left - \right $	DELA CK-U
	-	-			-			-		-	-												-	\vdash	TIME DELAY (ON PICK-UP
													 				 	 	 	 			<u> </u>	$\left - \right $	μQ
													 				 	 		 				$\left - \right $	т 0
													 							 			<u> </u>	$\left - \right $	TIME DELAY WITH FORCIBLY GUIDED
																	 	 	 	 			<u> </u>	$\left - \right $	ELAY ELAY
													 				 	 	 	 			<u> </u>		AE DE RCIB
																 	 	 		 			<u> </u>		É C
													 				 		 	 			<u> </u>		-
																	 	 		 			├		MEASUREMENT
																	 	 		 			<u> </u>		SURE
																				 			<u> </u>		MEAS
																	 			 			<u> </u>		
																	 	 		 			<u> </u>		
																				 			<u> </u>		KET
																				 			<u> </u>		SOCKET NUMBERING
																				 			<u> </u>		z
																									FRONT
																									E 440
																									FRONT
																									BACK
																									BA
																								\square	E
						1																			L,
													 											\vdash	PCB MOUNT
													 											\vdash	CB N
																								$\left - \right $	
			I				L	I															Ĺ		1

SOCKETS	PAVM321 PA\	/M481 PAVM8	3 01 FG	OR M SERIES RELAYS
	CONNECTION FRONT	TERMINAL TYPE SCREW	MOUNTING PANEL / DIN RAIL	
6. 1 1. 1 1 0 1 1 0 1 1 0 1 1 0 1 0 1 0 1		PAVM321	 PRODUCT ADVAN Cable secured with scree Mounting to panel and Sturdy construction No internal soldering Relay fastened with sec Provision for fitment of Protection IP20 	ews 35mm DIN rail curing screws

PAVM481

43

F

PAVM321

PAVM481

PAVM801

Side view

PAVM801

А А ø 5 15 **Fixing template** To order F PAVM321 P01 4003 46 Dielectric strength: 2,5 kV 50 Hz 1 min PAVM481 P01 4003 85 Type and size of screw: M3 thread, cross head PAVM801 P01 4003 86 Tightening torque: 0.5...0.8 Nm Width of slot: 7.3 mm

PAVM481

Maximum section of cable: 2 × 2.5 mm² Fire resistance:EN 60695-2-1, UL94 - V0 Standards: EN 60255, EN 61810

SPECIFICATIONS.	

Outline and fixing

А

61 mm

89 mm

145 mm

Model

PAVM321

PAVM481

PAVM801

Weight: 305 / 440 / 710 g Operating temperature: -25°C...+55°C Storage temperature: -40°C...+70°C Panel mounting: • ø holes: 5 mm Mounting to Omega support: H35 to DIN 46277/3 - EN 60715 standards Degree of protection: IP20

1⊕ 2⊕ 3⊕ 4⊕		Ð
	A1 B1 B2 B2 A2	9
	300	

132

Ð Ð

 $(\textcircled{P}^{11} (\textcircled{P}^{21} (\textcircled{P}^{31} (\textcircled{P}^{41}$

 $\oplus^{20} \oplus^{30} \oplus^{40}$

٦

Ð

0 \bigoplus^{21} Ð Ð

 \oplus

_

Ð Ð Ð Ð

Ð

 $\textcircled{}^{11}$

 $\textcircled{}^{10}$

Π

BI B2

188

 $\oplus^{20} \oplus^{30}$

 $(\mathbb{P}^{21} (\mathbb{P}^{31} (\mathbb{P}^{41}$

40

æ Ð

Ð

П

0

0

PAVM321

(D²⁰ (D³⁰ (D⁴⁰

0

(¹⁰

C

Ð Ð Ð Ð

 \oplus (\mathbf{A}) (\mathbf{A}) æ

Π

Ð, Ð Ð

Ð BI

(D¹⁰

æ Ð æ

æ

0

8 0

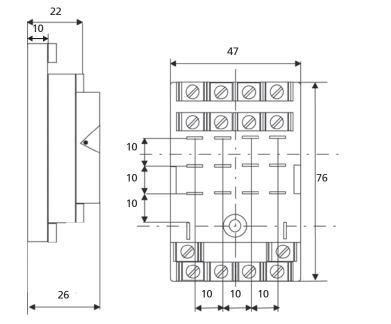
0

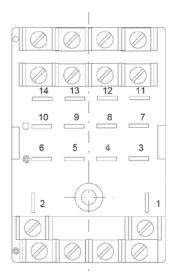
0

83

-						· · · · · · · · · · · · · · · · · · ·
		$\oplus^{11} \oplus^{21} \oplus^{31} \oplus^{41}$	$\oplus^{11} \oplus^{21} \oplus^{31} \oplus^{41}$			
	F	$ \oplus^{10} \oplus^{20} \oplus^{30} \oplus^{40} $				$(\textcircled{P}^{10} \textcircled{P}^{20} \textcircled{P}^{30} \textcircled{P}^{40}$
	0					()
83						
8	۲I					
	H	1⊕ 2⊕ 3⊕ 4⊕	1⊕ 2⊕ 3⊕ 4⊕	1⊕ 2⊕ 3⊕ 4⊕	1 [⊕] 2 [⊕] 3 [⊕] 4 [⊕]	
		A1 + B1 + B2 + A2 +	A1 B B1 B B2 C A2 C	A1 B B1 B B2 C A2 C		A1 B B1 B B2 B A2 B
-						

CHAUVIN ARNOUX 197 ENERG

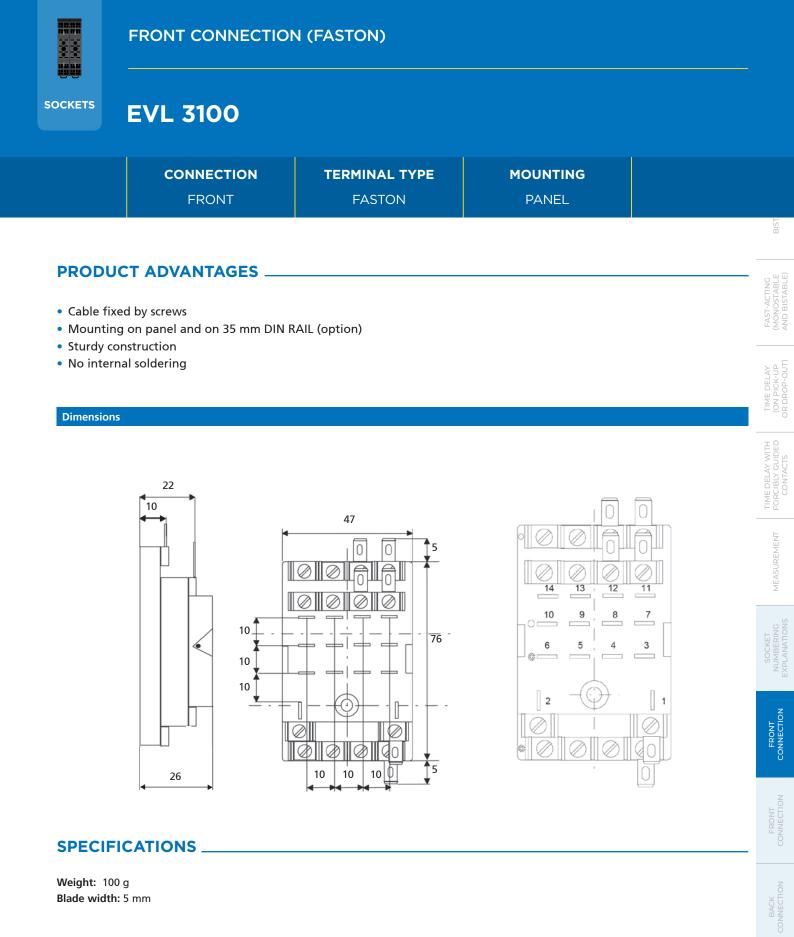




PRODUCT ADVANTAGES _

- Cable fixed by screws
- Mounting on panel and on 35 mm DIN RAIL (option)
- Sturdy construction
- No internal soldering

Dimensions



SPECIFICATIONS _

Weight: 100 g Maximum section of cable: 2.5 mm

Ë	To order	
	EVV 3100	EVVA 4150

 To order

 EVL 3100
 EVVB 4149

For other accessories, see page 201

199

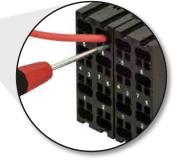
SOCKETS

PRIRO8x | PRIR16x | PRIR24x | PRIR32x | PRIR48x

CONNECTION TERMINAL TYPE MOUNTING
REAR SPRING CLAMP PANEL

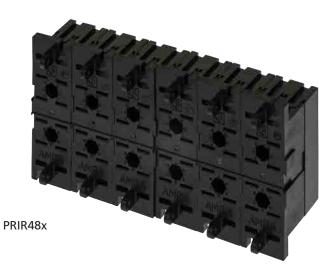
PRODUCT ADVANTAGES

- Cable secured with spring clamp mechanism
- Insertion of cable with no need for tools
- Quick and easy wiring, saving more than half the time taken with conventional wiring
- Panel mounting
- Excellent contact pressure on relay terminals
- Sturdy construction, no internal soldering


- Compatible with cable up to 2.5mm², bare (flexible or rigid) and with lug; 2 inputs per terminal
- Provision for fitment of keying pins
- Provision for fitment of retaining clip
- Protection IP20

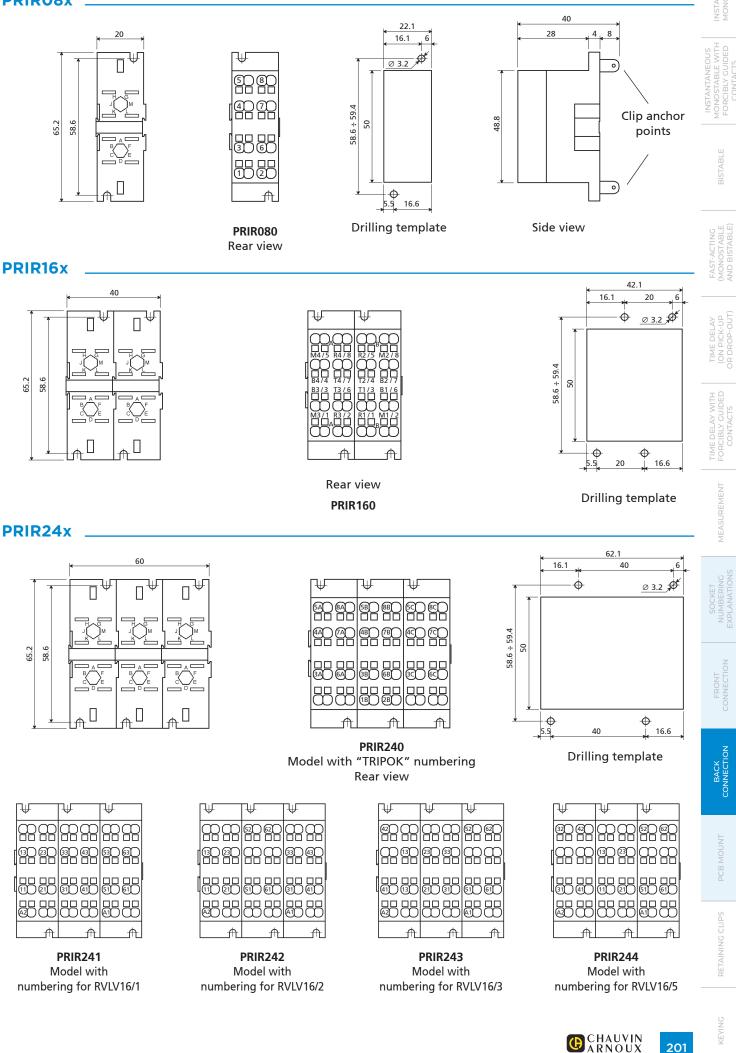
PRIR08x

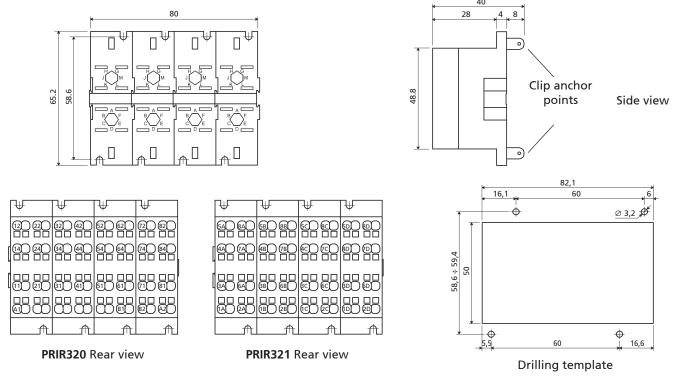
PRIR16x



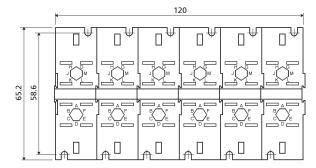
Detail of connections

PRIR24x



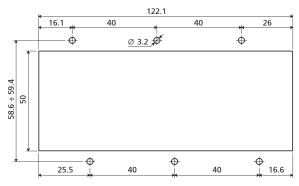


PRIR08x

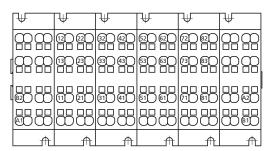

201

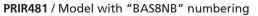
ENERG

PRIR48x


	Ψ	Ψ	Ψ	Ψ	Ψ	Ĥ
			90 @P			
[140 ee 	340 440 	540 640 	740 840 	940 (HO	
[100 900	910 410	90 90	90 90 90 90	9000	
	88		88	88		88
	₼	₼	₼	₼	₼	₼

PRIR480 / Model with "ESAPOK" numbering


SPECIFICATIONS.


Weight: 35 / 70 / 105 / 140 / 210 g Operating temperature: -50 °C...+70 °C Storage temperature: -50 °C...+85 °C Panel mounting: • ø holes: 3.2 mm Degree of protection: IP20 Dielectric strength: 2.5 kV 50 Hz 1 min Fire resistance: EN 60695-2-1, UL94 - V0, EN 45545-2, NFPA130 Standards: EN 61810, EN 61373 Terminal type: spring clamp Inputs for each relay terminal: 2 Minimum section of cable: • cable without lug: 1 mm² • cable with lug: 0.5 mm² Maximum section of cable: 2.5 mm² Wire stripping length, mm: 10 mm ± 0.5 mm Length of lug: 12 mm Wiring with rigid cables or lug: pressure grip

Wiring with flexible cables, extraction of cables: using screwdriver type tool with slim shaft and slotted head measuring 2.5mm x 0.4mm, inserted perpendicularly to the socket.

Drilling template

Ë	To order	
	PRIR080	P01 4002 60
	PRIR160	P01 4002 61
	PRIR240	P01 4002 62
	PRIR320	P01 4002 63
	PRIR480	P01 4002 64

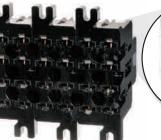
Notes

																					<u> </u>
																					OED
																					ANEO ABLE V Y GUIT
																					STANT NOST/ RCIBL
																				_	NO MO FOIL
Market	_																				
Market	_																				BLE
	-							_		_						 					BISTA
	-							 	_	_				 	 	 					
								 -							 	 				-	
	-														 	 					TING
															 	 					ST-AC NOST DIST
	-																				FA (MG ANI
																				-	
																					(-UP -OUT)
																					AE DE A PICK XROP-
	_	_	-					 	_	-+					 						TIN (ON OR D
MONDALINA	_							 		_				 	 	 				-	
MONDALINA	-	_						 	_	-				_	 				-		WITH UIDED TS
MONDALINA	+	_						 	-	+	 		_	 _	 	 					ELAY 3LY GU NTAC
MONDALINA	+	_						 		-				-	 						ME D ORCIE COI
	+	_																		-	Εŭ
	+														 	 	 				ENT
																					IREMI
																					IEASU
Monor Monor Monor Monor Monor Monor Monor Monor Monor Monor Monor Monor Monor																				_	2
Monor Monor Monor Monor Monor Monor Monor Monor Monor Monor Monor Monor Monor																					s Z
Monor Monor Monor Monor Monor Monor Monor Monor Monor Monor Monor Monor Monor	_							 								 					KET ERIN ATIO
Monor Monor Monor Monor Monor Monor Monor Monor Monor Monor Monor Monor Monor	_							_							 	 					SOC NUME (PLAN
Market								 		_	 			 	 	 	 				Ê û
Market								 	_	-	 			 _	 	 	 				7
Market	+	_																			CTION
Market	+																				FRO
Marchine Marchine <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>Ŭ</td></td<>																					Ŭ
Marchine Marchine <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>																					
Marchine Marchine <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>X NOIL</td></td<>																					X NOIL
Marchine Marchine <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>BAC</td></td<>																					BAC
	_							 	_	_					 						8
								 	_	_				 	 	 					
	-								_	_											TNU
			-						+	+						 					B MO
Image: Selection of the	-		+						+	+		-							-		РС
Image: Sector	+								+	+											
Belaying Generating Relation of the state of the stat	+									+											CLIPS
RETAIN																					DNIN
																					ETAIN
																				_	Ц

203

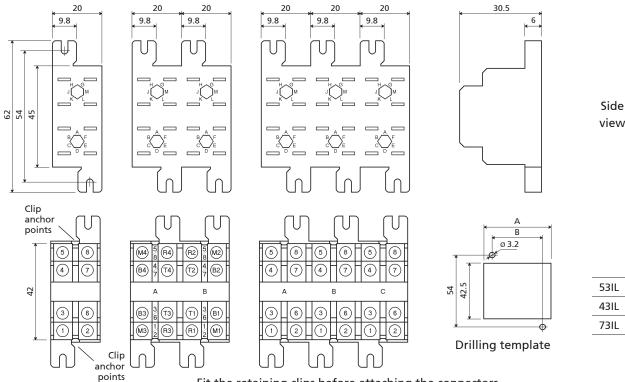
SOCKETS

53IL | 43IL | 73IL


CONNECTION	TERMINAL TYPE	MOUNTING
REAR	SCREW	PANEL

PRODUCT ADVANTAGES .

- Cable secured with removable screws
- Panel mounting
- Sturdy construction
- Excellent contact pressure on relay terminals
- No internal soldering
- Inputs for maximum section 2.5 mm²
- Provision for fitment of keying pins
- Provision for fitment of retaining clip
- Protection IP10


43IL

73IL

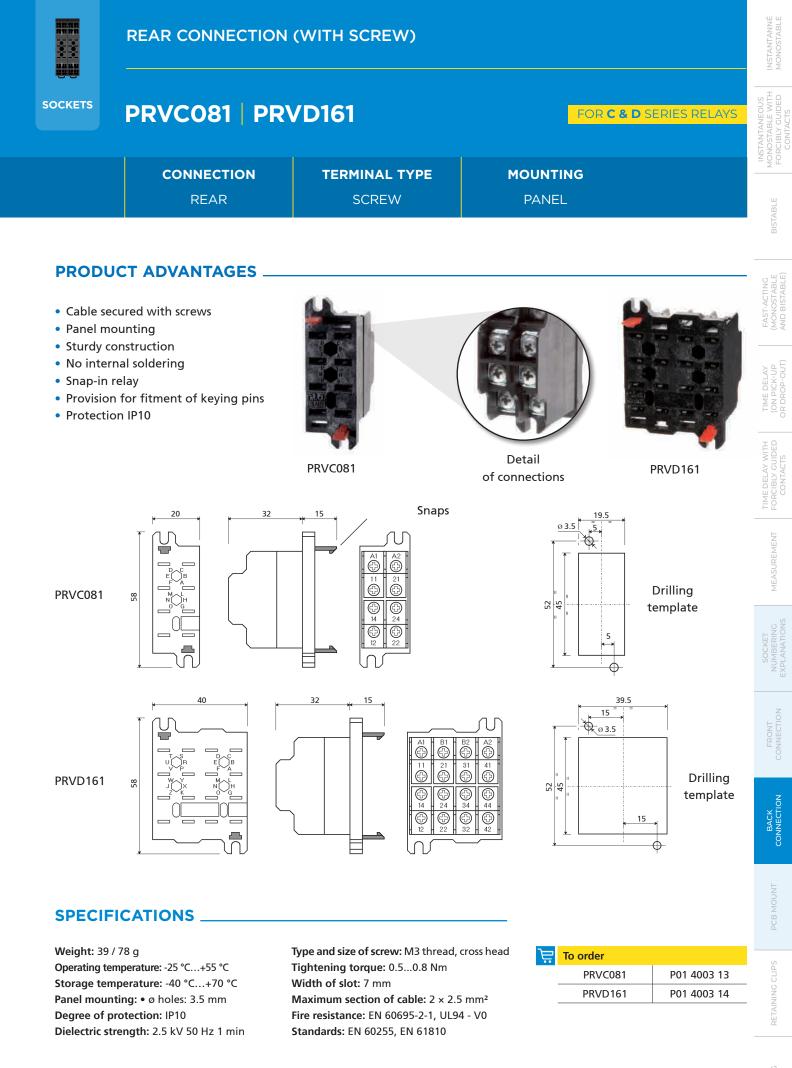
Detail of connections

53IL

Side

	Α	В
E 211	20 5	10

	A	В
53IL	20.5	10
43IL	40.5	30
73IL	60.5	50


Fit the retaining clips before attaching the connectors

SPECIFICATIONS

Weight: 41 / 82 / 123 g Operating temperature: -25 °C...+70 °C Storage temperature: -40 °C...+85 °C Degree of protection: IP10 Dielectric strength: 2.5 kV 50 Hz 1 min Type and size of screw: M3 thread, cross head Removable screw for use with eyelet terminals Tightening torque: 0.5...0.8 Nm Width of slot: 5.4 mm Maximum section of cable: 2 × 2.5 mm² Fire resistance: EN 60695-2-1, UL94 - V0, EN 45545-2, NFPA130 Standards: EN 60255, EN 60947, EN 61810, EN 61373

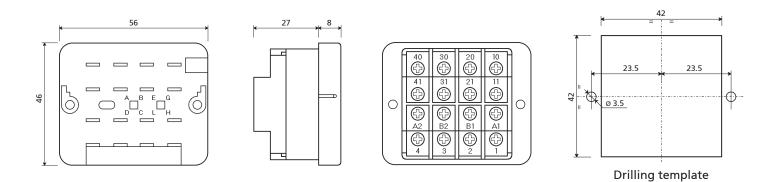
Ë	To order	
	53IL	P01 4002 40
	43IL	P01 4002 41
	73IL	P01 4002 42

205

CHAUVIN ARNOUX

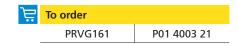
SOCKETS	REAR CONNECTION	(WITH SCREW)		FOR G SERIES RELAYS	
	CONNECTION REAR	TERMINAL TYPE SCREW	MOUNTING PANEL		
PRODU	JCT ADVANTAGES				

• Cable secured with screws


- Panel mounting
- Sturdy construction
- No internal soldering

- Provision for fitment of keying pins
- Provision for fitment of retaining clip
- Protection IP10

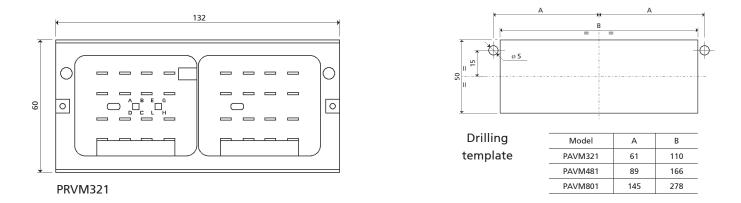
PRVG161

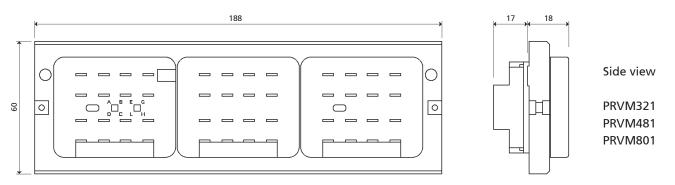


SPECIFICATIONS

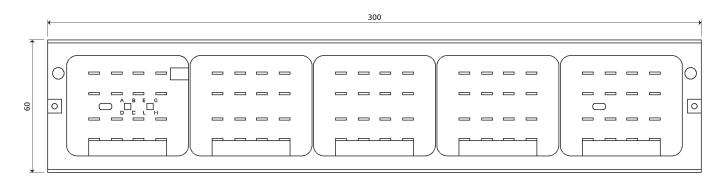
Weight: 85 g

Operating temperature: -25 °C...+55 °C Storage temperature: -40 °C ... +70 °C Panel mounting: • ø holes: 3.5 mm Degree of protection: IP10 Fire resistance: EN 60695-2-1, UL94 - V0 Standards: EN 60255, EN 61810 Dielectric strength: 2.5 kV 50 Hz 1 min Type and size of screw: M3 thread, cross head Tightening torque: 0.5...0.8 Nm Width of slot: 7 mm Maximum section of cable: 2 × 2.5 mm²

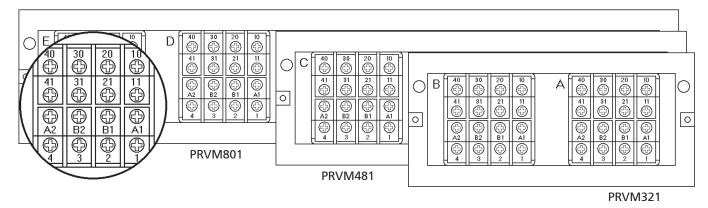



	REAR CONNEC	TION (WITH SCI	REW)			INSTANTANNÉ MONOSTABLE		
SOCKETS	PRVM321	PRVM481	PRVM8	01	FOR M SERIES RELAYS	ISTANTANEOUS NOSTABLE WITH RCIBLY GUIDED CONTACTS		
	CONNECTION REAR		I AL TYPE Rew	MOUNTING PANEL	5	BISTABLE		
PROD	UCT ADVANTAGES	5				TTING TABLE TABLE		
 Cable secured with screws Panel mounting Sturdy construction Relay fastened with securing screws Provision for fitment of keying pins Protection IP10 								
	rnal soldering					TIME DELAY (ON PICK-UP OR DROP-OUT)		
•						TIME DELAY WITH FORCIBLY GUIDED CONTACTS		
P	RVM321		Detail	of connections		MEASUREMENT		
•		~~~		í I		SOCKET NUMBERING EXPLANATIONS		
		00	6 7			FRONT CONNECTION		
P	RVM481).		BACK CONNECTION		
о Бо						PCB MOUNT		
P	RVM801					RETAINING CLIPS		
						4ING		

KEYING


207

CHAUVIN ARNOUX ENERGY



PRVM481

PRVM801

SPECIFICATIONS

Weight: 220 / 350 / 520 g Operating temperature: -25 °C...+55 °C TStorage temperature: -40 °C...+70 °C Panel mounting: • ø holes: 5 mm Degree of protection: IP10 Dielectric strength: 2.5 kV 50 Hz 1 min Type and size of screw: M3 thread, cross head Tightening torque: 0.5...0.8 Nm Width of slot: 7 mm Maximum section of cable: 2 × 2.5 mm² Fire resistance: EN 60695-2-1, UL94 - V0 Standards: EN 60255, EN 61810

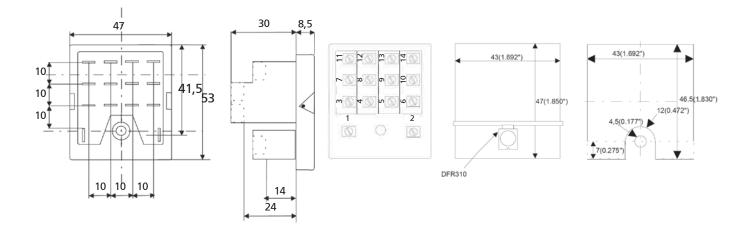
Ë	To order	
	PRVM321	P01 4003 52
	PRVM481	P01 4003 53
	PRVM801	P01 4003 54

Notes

•																											<u> </u>
																											INSTANTANEOUS MONOSTABLE WITH FORCIBLY GUIDED CONTACTS
		 	 	 									 										 			7	ABLE '
	-					-		-						_				_									VISTAN NOST ORCIB
														_				_	_						<u> </u>		A D D D
																		_	_						<u> </u>		
																			_					\vdash			BISTABLE
																								<u> </u>		ł	BIST
														_													
																						_					<u>с</u> Щ Щ
																											FAST-ACTING (MONOSTABLE AND BISTABLE)
																											AST-A 10NO: VD BIS
																											Ē
																									<u> </u>		ELAY :K-UP P-OUT
																			_						<u> </u>		TIME DELAY (ON PICK-UP OR DROP-OUT)
																		_	_						<u> </u>		F 0 R
																		_	_								τO
																											Y WIT UIDE CTS
																											TIME DELAY WITH FORCIBLY GUIDED CONTACTS
																											ORCI CORCI
																											- L
																											ENT
																											JREM
																											MEASUREMENT
																									<u> </u>		NS
																		_							<u> </u>		SOCKET NUMBERING EXPLANATIONS
	-							-						_	_			-	_			_		<u> </u>	<u> </u>		SOC NUME
														_				+	_	_				\vdash	<u> </u>		- û
														_				-						<u> </u>			7
														_													CTIO
																											FRONT CONNECTION
																											Ŭ
																											K MOIT
																											BACK CONNECTION
																									<u> </u>		8
																									<u> </u>		
																			_						<u> </u>		TNU
																		_	_					<u> </u>	<u> </u>		PCB MOUNT
																		_	_					<u> </u>	<u> </u>		PCE
	-			-	-	-	-	-	-					_				+	+	\rightarrow	-	_		\vdash	-		
							-	-	-					-				+	+						-		LIPS
							-											+	\neg	\neg					<u> </u>		RETAINING CLIPS
																		\uparrow									ETAIN
																											Ϋ́.
		 	 										 			 			(1						,	

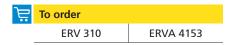
209

SOCKETS

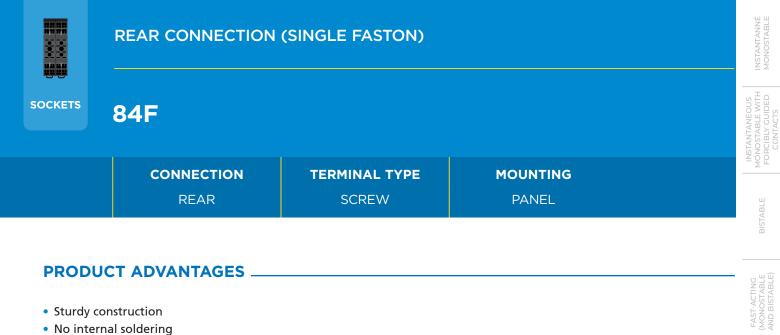

ERV 310

CONNECTION	TERMINAL TYPE	MOUNTING
REAR	SCREW	FLUSH

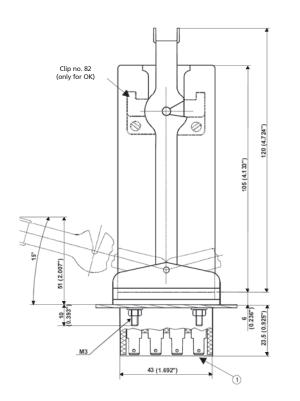
PRODUCT ADVANTAGES _

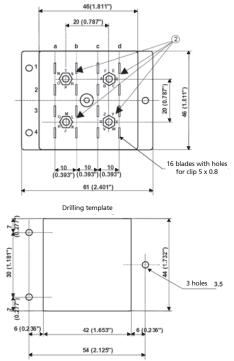

- Cable secured by screws
- Sturdy construction
- No internal soldering

Dimensions


SPECIFICATIONS

Weight: 100 g


For other accessories, see page 201



- Sturdy construction
- No internal soldering

Dimensions

1. Faston 4.8 x 0.8 mm 2. Housing for keying pin

CHAUVIN ARNOUX

ENERGY

SPECIFICATIONS

Weight: 120 g Operating temperature: -40 to +70°C

📜 To ol	der	
	84F	ACC.84F
A	DAPTER KIT N82	P01 4002 11

211

BACK CONNECTION

TIME DELAY (ON PICK-UP OR DROP-OUT)

TIME DELAY WITH FORCIBLY GUIDED CONTACTS

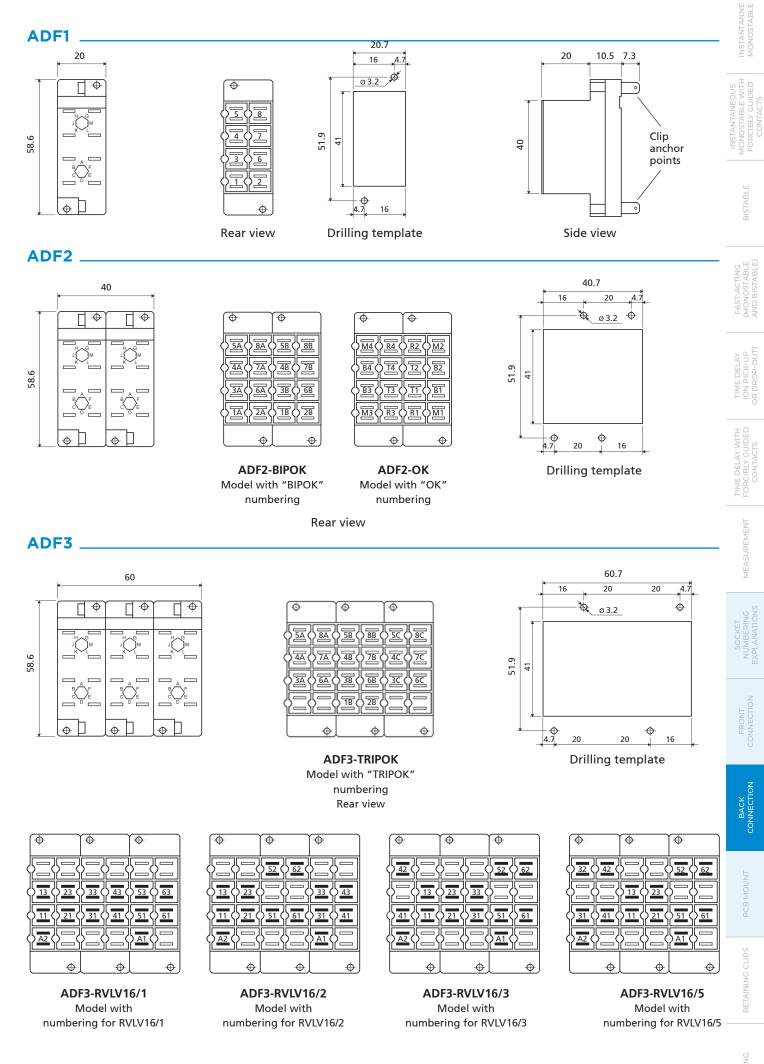
PRODUCT ADVANTAGES .

- Connection of cable with faston clip
- 2 inputs for each relay terminal
- Sturdy construction
- Excellent contact pressure on relay terminals
- No internal soldering
- Provision for fitment of keying pins
- Provision for fitment of retaining clip
- Protection IP20

ADF1

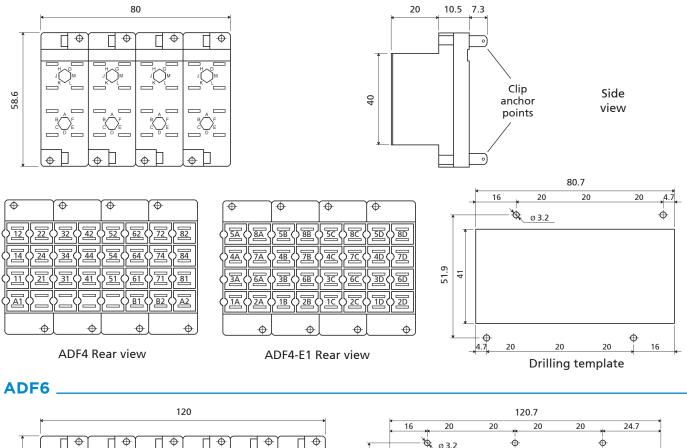
ADF2

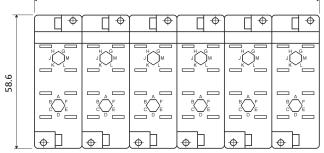
Detail of connections

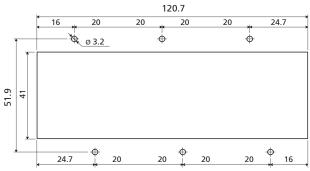


ADF3

ADF4






CHAUVIN ARNOUX ENERGY

213

ADF4

Drilling template

	¢		¢		0		0		¢		¢	
ł	24	24	34	244	[[]	2004	24	84	294	224	2114	124
ł	212	22	22	242	[22]	<u>}</u>	[22]	82	22	222	2112	2122
ζ	[1]	21	[]]	[4]	[1]	[2]	[2]	281	<u></u> [1]	[][]	[]]	221
ł	\geq			\sum	2	\mathbb{Z}		\geq	2		2	
ĺ		¢		\$		\$		¢.		¢		¢

ADF6-ESAPOK / Model with "ESAPOK" numbering

SPECIFICATIONS

Weight: 32 / 64 / 96 / 128 / 192 g Operating temperature: -25 °C...+70 °C Storage temperature -40 °C...+85 °C Degree of protection: IP10 Dielectric strength: 2.5 kV 50 Hz 1 min Type and size of faston clip: 2 × 4,8×0.8 Width of slot: 8 mm Maximum section of cable: 2 × 2.5 mm² Fire resistance: EN 60695-2-1, UL94 - V0, EN 45545-2 Standards: EN 60255, EN 60947, EN 61810, EN 61373

Ë	To order	
	ADF1	P01 4002 50
	ADF2 - OK (UTM)	P01 4002 51
	ADF2 - BIPOK	P01 4002 52
	ADF3 - TRIPOK	P01 4002 53
	ADF3 - RVLV16/1	P01 4002 54
	ADF3 - RVLV16/2	P01 4002 55
	ADF3 - RVLV16/3	P01 4002 56
	ADF3 - RVLV16/5	P01 4002 57
	ADF4	P01 4002 59
	ADF6	P01 4002 58

Notes

-			-																						22
																								_	INSTANTANEOUS MONOSTABLE WITH FORCIBLY GUIDED CONTACTS
			1	 	 	 	 			 	 		 			 					 			1	ITANE IABLE LY GUI
																					<u> </u>	<u> </u>	<u> </u>		NSTAN DNOST DRCIB CON
-																	_			 	-	-	<u> </u>	- 1	Ξ M H
																					-				щ
																									BISTABLE
																									B
																					<u> </u>	<u> </u>	<u> </u>		
-																	_	_		 	<u> </u>	–	<u> </u>		FAST-ACTING (MONOSTABLE AND BISTABLE)
																	_		_	 	-	-		ł	ST-AC1 NOST, BIST/
																				 	-	-			FAS (MO AND
] -	
																						<u> </u>	<u> </u>		ELAY K-UP -OUT)
																				 	<u> </u>	<u> </u>	<u> </u>		TIME DELAY (ON PICK-UP OR DROP-OUT)
-		-						-	-			-		 			_	_		 	-	-	-		Н () Ч Ч
																				 	-	-		-	ΞΩ
																					-	<u> </u>	-	1	AV WIT GUIDE ACTS
																									E DEL/ CIBLY CONT/
																					L	<u> </u>	<u> </u>		TIME DELAY WITH FORCIBLY GUIDED CONTACTS
																					<u> </u>	<u> </u>	<u> </u>	-	
-																				 	-	-			EMEN
																									MEASUREMENT
																									X
																									N Z
																					<u> </u>	<u> </u>	<u> </u>		SOCKET NUMBERING EXPLANATIONS
-																				 	<u> </u>	–	<u> </u>		SOC NUME XPLAN
-																				 				{	ш
																				 	<u> </u>	<u> </u>			Z
																									FRONT CONNECTION
_																					<u> </u>	<u> </u>	<u> </u>		CONN
																				 	<u> </u>	<u> </u>	<u> </u>		
																		_			-	-			NO
																					-	-		1	BACK CONNECTION
																									CON
																						<u> </u>	<u> </u>		
																					<u> </u>	<u> </u>	<u> </u>		TNU
																				 	\vdash	\vdash	<u> </u>		PCB MOUNT
-	-								-			-						\dashv				-			PCI
																		+			-	\vdash	<u> </u>	-	10
																									CLIPS
																			[\vdash	\vdash	\square		RETAINING CLIPS
<u> </u>		-	<u> </u>			-			-			-					_	-		 	<u> </u>	_	<u> </u>		RETA
																								_	

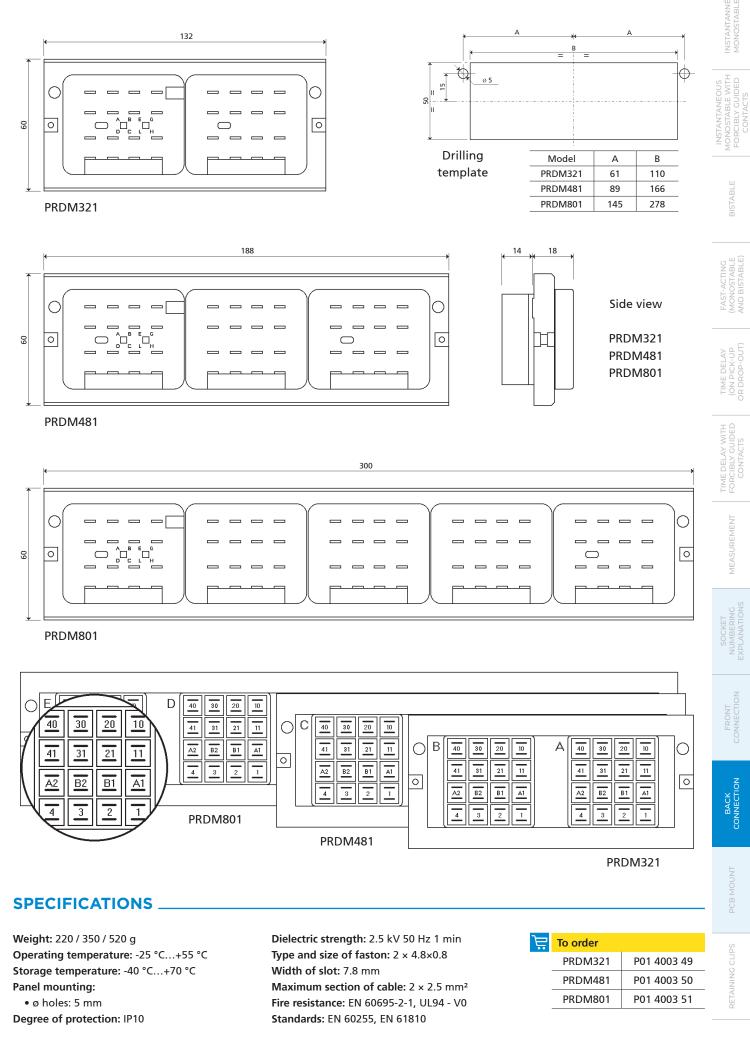
KEYING

SOCKETS	PRDM321	PRDM481 P	RDM801	FOR M SERIES RELAYS
		CONNECTION REAR	TYPE DE BORNE DOUBLE FASTON	MOUNTING PANEL
PROD		ES		
Panel2 inpu	ection of cable with fasto mounting Its for each relay termina		 No internal soldering Relay fastened with securi Provision for fitment of keeping 	-

• Sturdy construction

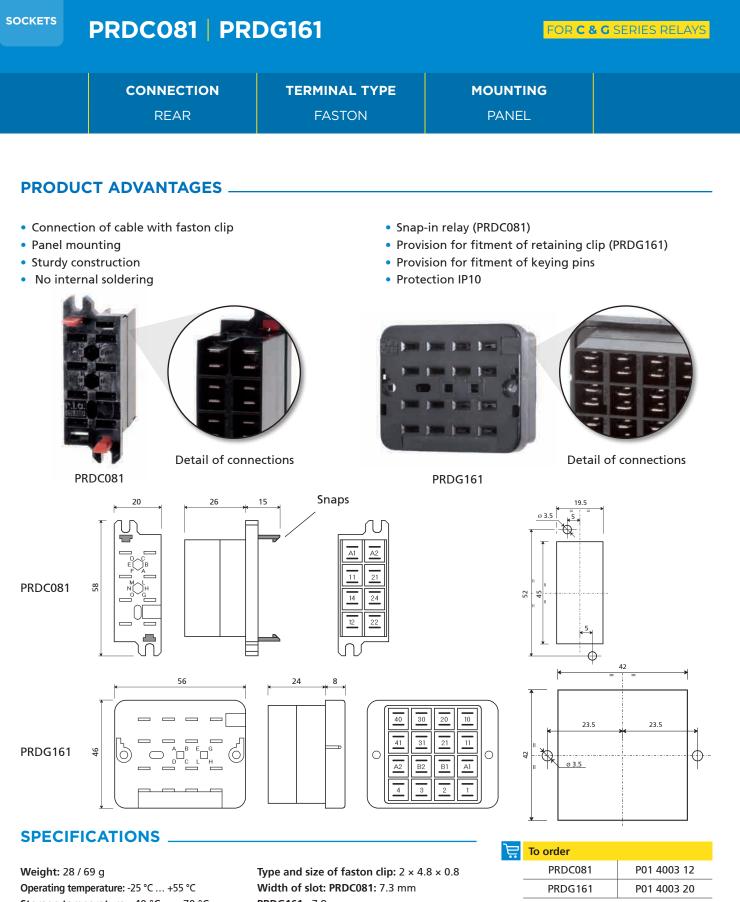
PRDM321

Protection IP10


Detail of connections

0

PRDM801



ONIAS,

CHAUVIN ARNOUX 217

ENERG

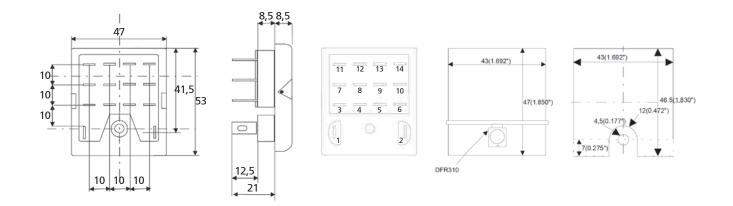
Operating temperature: -25 °C ... +55 °C Storage temperature: -40 °C ... +70 °C Panel mounting: • ø holes: 3.5 mm Degree of protection: IP10 Dielectric strength: 2.5 kV 50 Hz 1 min Width of slot: PRDC081: 7.3 mm PRDG161 : 7.8 mm Maximum section of cable: 2 × 2.5 mm² Fire resistance: EN 60695-2-1, UL94 - V0 Standards: EN 60255, EN 60947, EN 61810

Notes

	•																							<u> </u>
Model Model <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>EOUS WITH UIDED</th></td<>																								EOUS WITH UIDED
Model Model <td< th=""><th></th><th></th><th></th><th></th><th></th><th>1</th><th></th><th></th><th></th><th></th><th></th><th></th><th> </th><th></th><th></th><th></th><th></th><th></th><th></th><th> </th><th></th><th></th><th>1</th><th>NTANE TABLE 3LY GU NTACT</th></td<>						1							 							 			1	NTANE TABLE 3LY GU NTACT
Model Model <td< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th> </th><th></th><th></th><th>_</th><th>_</th><th></th><th></th><th><u> </u></th><th>_</th><th><u> </u></th><th></th><th>ONOS ONOS ORCIE</th></td<>													 			_	_			<u> </u>	_	<u> </u>		ONOS ONOS ORCIE
													 _						 				-	Σщ
																				<u> </u>	<u> </u>		1	Щ
																								ISTAB
MONONE																				<u> </u>	<u> </u>	<u> </u>		
MONONE													 			_				<u> </u>	_	<u> </u>	-	
MONONE													 			_	_			-	-	<u> </u>		TING ABLE ABLE
MONONE													 							-	-			ST-AC NOST
																				-	<u> </u>			FA (MG AND
MONDAL																							-	
MONDAL																				<u> </u>	<u> </u>	<u> </u>		ELAY K-UP
MONDAL													 			_			 	<u> </u>	_	<u> </u>		ME DE N PIC
MONDALINA								-	-				 _			-	_		 	-	-	<u> </u>		Н O RO
MONDALINA													 _			-			 	-	-		-	ΞΩ
MONDALINA																				-	-	-		AV WIT GUIDE ACTS
MONDALINA																								E DELZ CIBLY CONTZ
MONDALINA																				L	<u> </u>	<u> </u>		FOR
MONONAL													 			_			 	<u> </u>	<u> </u>	<u> </u>	-	
MONONAL													 _			-	_	_	 	-	-	-		EMEN
MONONAL													 _						 					ASUR
MONDALINA																			 	<u> </u>	<u> </u>			Σ
MONDALINA																								S
MONDALINA																				<u> </u>	<u> </u>	<u> </u>		ERING ATION
MONDALINA								-	-				 _			_	_	_		<u> </u>	<u> </u>	<u> </u>		SOC NUMB (PLAN
Market													 _			-	_	_		-	-	<u> </u>		- 6
Market													 _			+			 	-	-			Z
Market																								ONT ECTIO
Market																								FR
																				<u> </u>	<u> </u>	<u> </u>		Ũ
													 			_			 	<u> </u>	_	<u> </u>		Z
													 			-			 	-	-	<u> </u>		ACK ECTIO
													 _			+			 	-	-		1	CONN
																								F
																								MOUN
Marting Construction Marting Construction <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td><u> </u></td><td><u> </u></td><td><u> </u></td><td></td><td>PCB</td></td<>																				<u> </u>	<u> </u>	<u> </u>		PCB
Image: Sector		-				-		-	-				_			+	-	-		-		<u> </u>		
Network													 			+	-		 	-	\vdash	<u> </u>		LIPS
																	\neg			-	<u> </u>			INGC
																								ETAIN
] .	C.

KEYING

SOCKETS

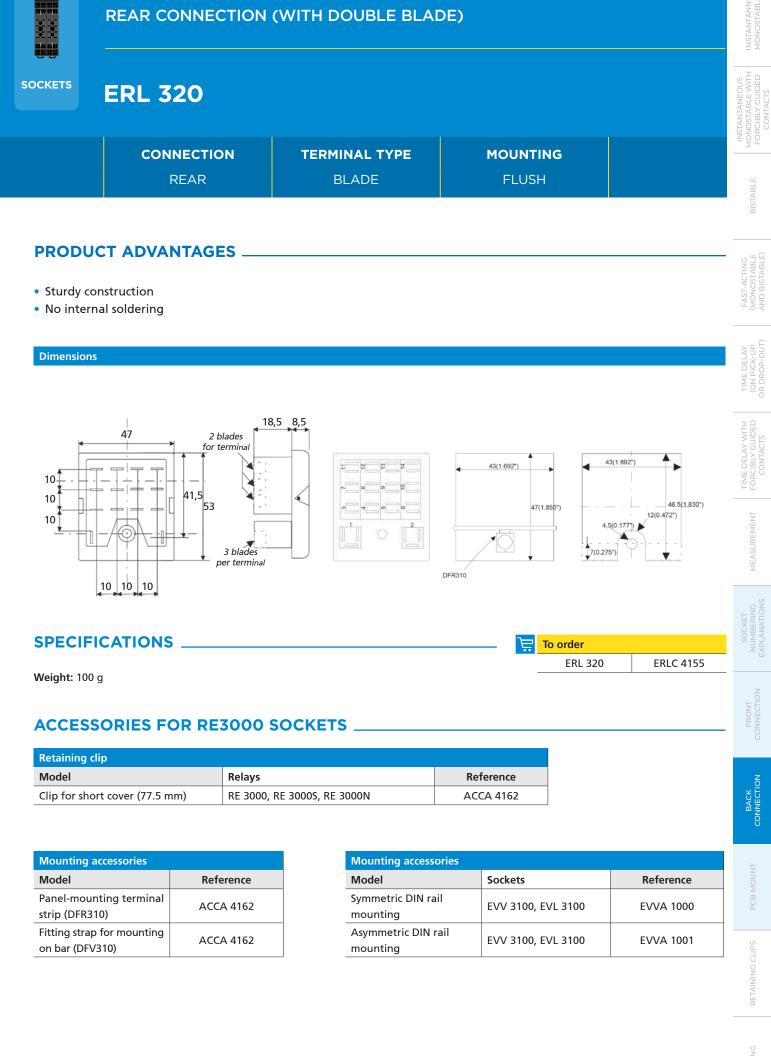

ERL 310

CONNECTION	TERMINAL TYPE	MOUNTING
REAR	BLADE	FLUSH

PRODUCT ADVANTAGES

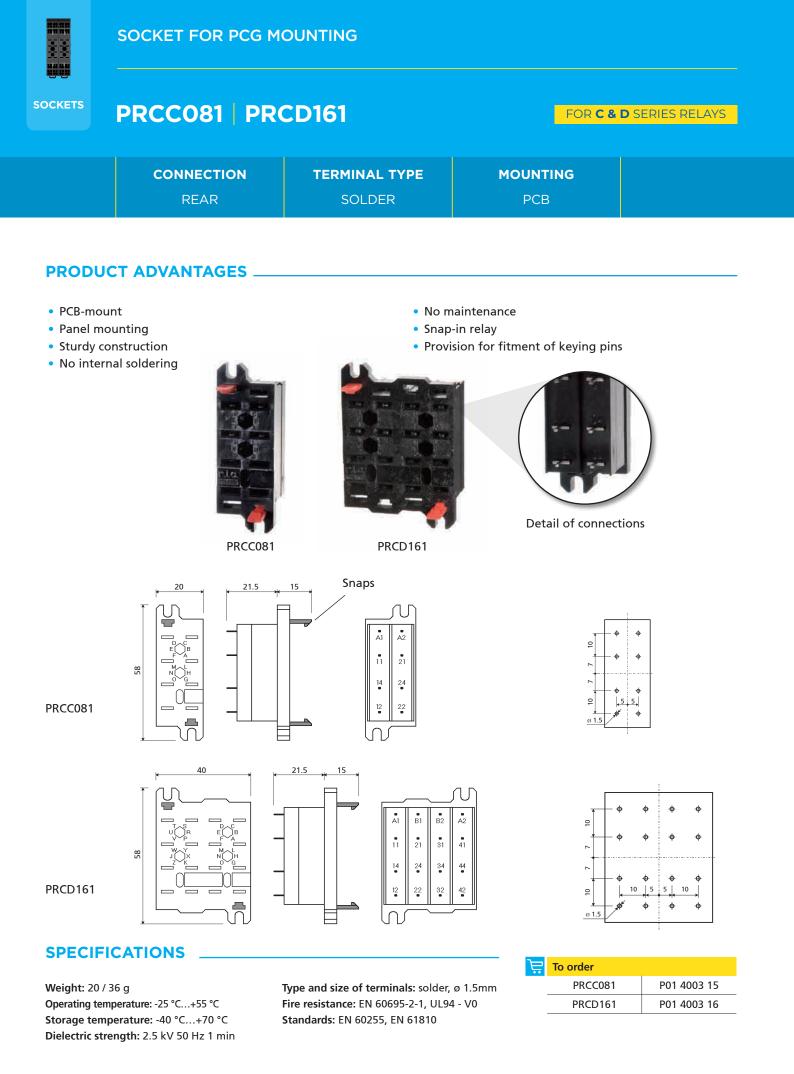
- Sturdy construction
- No internal soldering

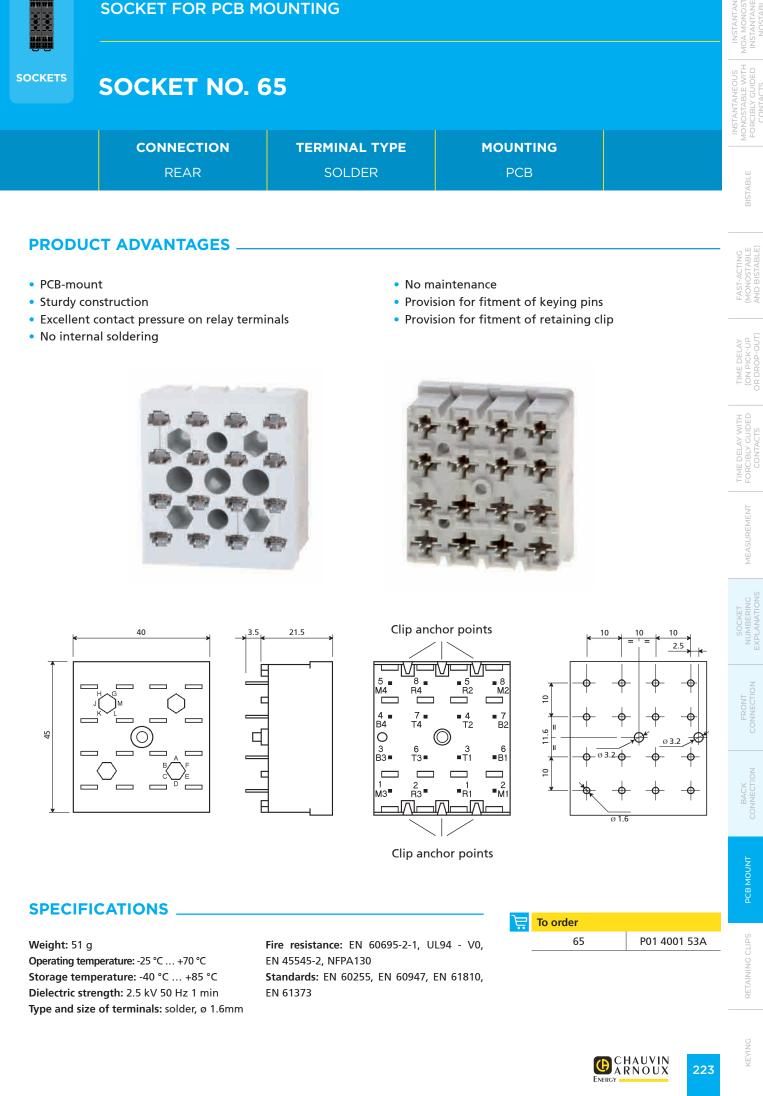
Dimensions


SPECIFICATIONS.

Weight: 100 g

岸 To order	
ERL 310	ERLB 4154


For other accessories, see page 201


221

CHAUVIN ARNOUX

CHAUVIN ARNOUX Ð ENERG

RETAINING CL

RETAINING CLIPS

RETAINING CLIPS

The designation of retaining clips is made up of two parts:

	1 st part: 2 or 3 letters	2 nd part: 2 numbers
	Identifies the type of relay	Identifies the model of socket
Example	RPB	48

1 st part:	Type of relay		2 nd part:	Socket model
RPB	Relays with cover, height 50mm (POKs, UTM series)		43	53IL, 43IL, 73IL, 65
RQ	Relays with cover, height 61mm (QPOK)			PAIR, PRIR, 50IP20-I DIN, 48BIP20-I DIN,
RG	Relays with cover, height 86mm (RGG series)		48	78BIP20-I DIN, 96IP20-I DIN, 156IP20-I DIN,
RC	Relays with cover, height 97mm (OK series)		40	50L, 48BL, 78BL, 96L ADF1, ADF2, ADF3,
RL	Relays with cover, height 109mm (OK series)			Series ADF4, ADF6
RT	Timer relays with cover, height 97mm		31	PAIR, PRIR, 50IP20-I DIN, 48BIP20-I DIN,
RM	Relays with cover, height 118mm (MOK series)			Series 50L, 48BL, ADF1, ADF2
VM18	Relays RCG, RDG		41	53IL, 43IL, 65
	Mod. RPB43 – RQ43 – VM1841	J	RQ48 – VM1	
	Mod. RL43 - RC43	Mod. RL48 - R	C48	Mod. RT48 - RG48

G, C & D LINE RETAINING CLIPS .

The designation of retaining clips is made up of two parts:

	1 st part: 4 characters	2 nd part: 2 numbers
	Identifies the line	Identifies the relay size
Example	VM12	21

~	
1	
Ć	C
))
	1

1 st part:	Relay line	2 nd part:	Relay size			
1/0412	Delays of Cline II all DCyr models	21	Relays of 82mm height			
VM12	Relays of G line all RGxx models	22	Relays of 112mm height			
	21		Relays of 50mm height			
VM18	Relays of C and D line 🛛 II RCxx and RDxx models (except RCG, RDG)	22	Relays of 75mm height			
		23	Relays of 82mm height			

Mod. VM12xx

Mod. VM18xx

N.B. Dimensions not to scale. The height of the clip varies according to the height of the relay. Pack containing 10 pieces.

VM12	
VM1221	P01400333
VM1222	P01400334
VM18	
VM1821	P01400330
VM1822	P01400329
VM1823	P01400331
RCG, RDG	
VM1831	P01400335
VM1841	P01400336
RPB	
RPB43	P01400159
RPB48	P01400158
RPB48-UTM	P01400165
RQ	
· · · · · · · · · · · · · · · · · · ·	

RG	
RG43	P01400166
RG48	P01400167

		ΣS
		INSTANTANEOUS MONOSTABLE WITH FORCIBLY GUIDED CONTACTS
RC		ANEQ BLE 7 ACTS
RC43	P01400161	INSTANTANEOUS AONOSTABLE WITH FORCIBLY GUIDED CONTACTS
RC48	P01400179	LNS/ NOM FORG
RL		щ
RL43	P01400164	BISTABLE
RL48	P01400187	m
RT		
RT43	P01400169	CTINC
RT48	P01400170	FAST-ACTING (MONOSTABLE) AND BISTABLE)
		(MC ANI
RM		
RM43	P01400133	 UT)0
RM48	P01400134	TIME DELAY ON PICK-UP
		TIME DELAY (ON PICK-UP OR DROP-OUT)
RMC48		- 0
RMC48	P01400173	
		DED

TIME DELAY WITH FORCIBLY GUIDED CONTACTS MEASUREMENT

SOCKET NUMBERING EXPLANATIONS

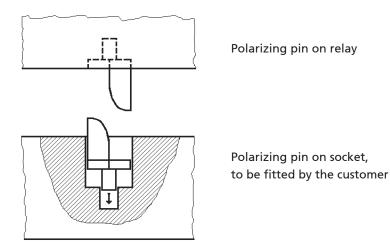
FRONT CONNECTION

BACK CONNECTION

KEYING

POSITIVE Mechanical keying

POLARIZING PINS



POSITIVE MECHANICAL KEYING (POLARIZING PINS)

Relay line	Ordering code	
OK, POK, RV	59	
Rxx	VC1705	

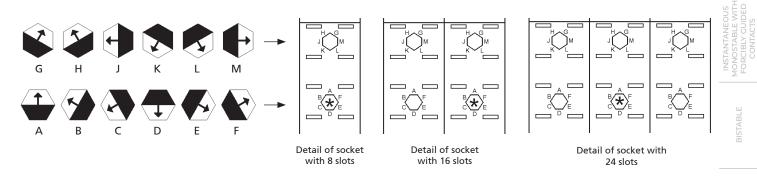
Keying pins are mechanical components of semi-hexagonal shape, designed to prevent a given relay from being plugged into a socket intended for a different component. The keying configuration is determined by fitting the pins both to the relay and to the socket, in positions identified by a dedicated code.

The hexagonal geometry of the receptacle allows the polarizing pins to be inserted in 6 different positions.

Whilst the use of this component is optional, it is nonetheless strongly recommended where there are multiple relays installed on an electrical panel, for example:

- two or more relays of the same model but with different input voltages
- two or more timer relays with different response and/or logic operating times (e.g. timed to operate on pick-up and timed to operate on drop-out)
- two or more instantaneous relays of different type (e.g. monostable and bistable)

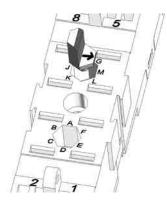
In these cases, the adoption of keying position accessories will prevent any accidental inversion of the relays by the operator, which would risk damage to the system and to the components themselves, as well as jeopardizing safety.


FITMENT AND POSITION _

Relays of standard design are not equipped with these accessories. The mounting position of polarizing pins, if requested, is determined by the manufacturer. Keying pins for sockets are fitted normally by the customer. In this case, keying accessories for application to the socket are ordered separately.

The following relays are supplied with pins fitted in positions determined by the manufacturer:

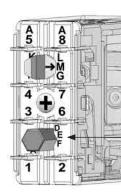
- STATIONS series, approved by ENEL / TERNA Italia to LV15/LV16/20 specifications
- RAILWAYS FIXED EQUIPMENT series, approved by RFI (FS Italia Group) to RFI DPRIM STF IFS TE 143 A specification
- RAILWAYS ROLLING STOCK series



*: receptacle to be left free in the event that the relay is fitted with an antirotation pin.

In the case of polarized input (e.g. with flyback diode), the relay is fitted with an antirotation pin (detail 60). The antirotation pin is always fitted to the following relays:

POK, BIPOK, TRIPOK, QUADRIPOK, ESAPOK, TM, OKTx, OKRx, OKRe-L, CLE, OKRe-Fp.


Example of selection, pos. M on socket with 8 slots

C line

D-M

E-N

-0

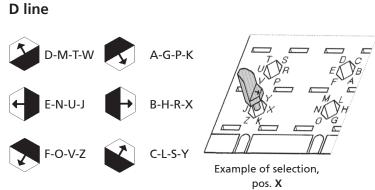
Example of selection, pos. M on POK relay

Antirotation pin

MONOSTABLE NSTANTANEOUS

Note: all relays are fitted with an antirotation guide pin.

A-G


B-H

C-L

2 hexagonal receptacles available on relay and on socket.

Example of selection,

pos. H

4 hexagonal receptacles available on relay and on socket.

Notes

					1																
-																					-
												_									
\vdash	-																				-
\vdash																					
	1																				
																					\neg
-																					
-																 					
\vdash								 			 					 			 		
																					\neg
-	-																				\neg
\vdash	-																				-
\vdash																					
	-																				
					L																
																					\neg
	-															 					\neg
\vdash	-								$\left - \right $							 					\neg
<u> </u>																					
									$ \neg$											7	, 7
	-																				\neg
-	-															 					\neg

																			MONOSTABLE INSTANTANEOUS
																			INSTANTANEOUS MONOSTABLE WITH FORCIBLY GUIDED CONTACTS
																		-	BISTABLE
																			FAST-ACTING (MONOSTABLE AND BISTABLE)
																		-	TIME DELAY (ON PICK-UP OR DROP-OUT)
																		-	TIME DELAY WITH FORCIBLY GUIDED CONTACTS
																		-	MEASUREMENT
																		-	SOCKET NUMBERING EXPLANATIONS
																			FRONT CONNECTION
																		-	BACK CONNECTION
																		-	PCB MOUNT
																		-	RETAINING CLIPS

INSTALLATION

Before installing the relay on a wired socket, disconnect the power supply.

The preferential mounting position is on the wall, with the relay positioned horizontally in the direction of the marking so that the label can be read correctly.

If a relay is used in the <u>"less favorable" conditions</u> including <u>"simultaneously"</u>:

- Power supply: the maximum allowed, permanently
- Ambient temperature: the maximum allowed, permanently
- Current on the contacts: the maximum allowed, permanently
- Number of contacts used: 100%

It is strongly recommended to space the relays at least 5 mm horizontally and 20 mm vertically to allow for proper upward heat dissipation and increase the life expectancy of the component.

In fact, the relays may be used in less harsh conditions. In this case, the distance between adjacent relays can be reduced or eliminated. Correct interpretation of the conditions of use allows optimization of the available space. Please contact Chauvin Arnoux Energy for more information.

To increase relay life expectancy, we recommend mounting relays intended for "continuous use" (permanent power supply), alternating them with relays intended for less frequent use.

For safe use, the use of retaining clips is recommended. For use on rolling stock, the relays have been tested according to the EN 61373 standard when equipped with retaining clip(s).

OPERATION

<u>Before use:</u> : if the relay is used after long storage periods, for example, contact resistance may increase due to slight natural oxidation or polluting deposits.

In order to restore the optimum conductivity for standard contacts (NOT gold plated), it is recommended to switch a load of at least 110Vdc - 100mA or 24Vdc - 500mA several times. The contacts will thus be "cleaned" by the electric arc generated during the current interruption and the mechanical self-cleaning action.

The common contact rubs against the fixed poles (NO and NC contacts) both when opening and when closing, thus ensuring self-cleaning.

In most cases, a higher contact resistance is not a problem. Many factors contribute to the correct use of the contacts and consequently to the relays' long-term reliability:

• Load: the current switching generates an electric arc with cleaning effects. To ensure proper electrical cleaning and maintain performance levels, we recommend:

- o Standard contacts: Minimum current = 20mA
- o Gold plated contacts: Minimum current = 10mA

• **Operating frequency:** relays are components which can operate with a wide range of switching frequencies. High frequency operation also allows a continuous cleaning effect by "sliding" (mechanical cleaning). In the event of low frequency operation (for example few time a day), we advise:

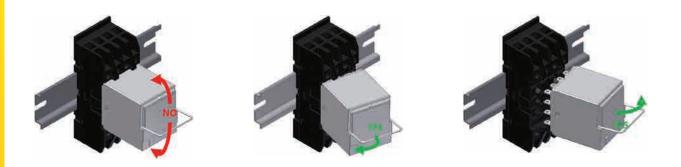
o Use of contact with currents twice those indicated.

o For currents lower than 10mA, use gold plated contacts and connect 2 contacts in parallel, in order to reduce the equivalent contact resistance

• **Pollution:** the presence of pollution can cause impurities on the surface of the contacts. Electric charges attract organic molecules and impurities which are deposited on the contact surface. Electrical and mechanical cleaning, respectively, burn off and remove such impurities. In the presence of pollution, the minimum recommended currents must be respected. In extreme cases, provide double the cleaning current.

Condensation is possible inside the relay when energized and the outside ambient temperature is cold; this is quite normal and does not affect the operation of the relay. The plastic materials of the relay do not possess hygroscopic properties

FRONT CONNECTION


RETAINING CLIPS

MAINTENANCE

No maintenance is required.

In the event of normal relay wear (electrical or mechanical end-of-life), the relay cannot be restored and must be replaced.

To check the component, relay removal must be carried out with slight lateral movements. An "up and down" movement can cause damage the terminals. For RMMV11 / RMMV17 removal, please read the product instructions.

Malfunctions are often caused by a power supply with inverted polarity, by external events or by use with loads exceeding the contact performance.

In case of suspected malfunction, energize the relay and observe if mechanical operation of the contacts / relay mechanism is performed. Check the power supply polarity if relay is equipped with polarized components (example: diode, LED).

- If you plan to use the relay, clean the contacts (see paragraph on "OPERATION") and check if the circuit load corresponds to the contact specifications. If necessary, replace with relays with gold-plated contacts. Note: the electrical continuity of contacts must be checked with adequate current.
- If it does not work, we recommend to use a relay of the same model and configuration.

If an investigation by Chauvin Arnoux Energy is required, pull-out the relay from the socket without removing the cap, avoid any other manipulation and contact us. You will be asked for the following data: environmental conditions, power supply, switching frequency, contact load, number of operations performed.

The fault can be described through the "TECHNICAL SUPPORT" section of the website www.chauvin-arnoux-energy. com/fr support. The relay cannot be repaired by the user under any circumstances.

STORAGE

The storage conditions must guarantee the environmental conditions (temperature, humidity and pollution) required for product conservation in order to avoid deterioration.

The product must be stored in an environment which is sheltered from atmospheric agents and pollution-free, with an ambient temperature between -40 and + 85 ° C and 80% RH max. Humidity may reach peaks of 95%. Whatever the case, there must be no condensation. Before use, please read the "OPERATION" section carefully.

CHAUVIN ARNOUX GROUP

AUSTRIA

Chauvin Arnoux Ges.m.b.H Slamastrasse 29/2/4 par Gastgegasse 27 Tel.: +43 1 61 61 9 61 Fax: +43 1 61 61 9 61-61 vie-office@chauvin-arnoux.at www.chauvin-arnoux.at

CHINA

Shanghai Pu-Jiang Enerdis Instruments Co., Ltd. 3 Floor, 23 Building Gemdale Viseen Minhang Technology & Industrial Park Project 1288 Iane, Zhongchun Road Minhang District, SHANGHAI City. Tel.: +86 21 65 21 51 96 Fax: +86 21 65 21 61 07 info@chauvin-arnoux.com.cn

GERMANY

Chauvin Arnoux GmbH Ohmstraße 1 77694 KEHL / RHEIN Tel.: +49 07851 99 26-0 Fax: +49 07851 99 26-60 info@chauvin-arnoux.de www.chauvin-arnoux.de

ITALY

AMRA SPA Via Sant'Ambrogio, 23 20846 MACHERIO (MB) Tel.: +39 039 245 75 45 Fax: +39 039 481 561 info@amra-chauvin-arnoux.it www.chauvin-arnoux.it

Chauvin Arnoux

MIDDLE EAST

Chauvin Arnoux Middle East PO Box 60-154 1241 2020 JAL EL DIB (Beirut) - LEBANON Tel.: +961 1 890 425 Fax: +961 1 890 424 camie@chauvin-arnoux.com www.chauvin-arnoux.com

SCANDINAVIA

CA MÄTSYSTEM AB Sjöflygvägen 35 SE-183 62 TABY Tel.: +46 8 50 52 68 00 Fax: +46 8 50 52 68 10 info@camatsystem.com www.camatsystem.com

SPAIN

Tel.: (33) 1 44 85 44 85 - Fax: (33) 1 46 27 73 89 info@chauvin-arnoux.fr - www.chauvin-arnoux.fr

> CHAUVIN ARNOUX IBÉRICA SA C/ Roger de Flor N°293 1a Planta 08025 BARCELONA Tel.: +34 902 20 22 26 Fax: +34 934 59 14 43 info@chauvin-arnoux.es www.chauvin-arnoux.es

14 rue Sarah Bernhardt - 92600 Asnières-sur-Seine - FRANCE

SWITZERLAND

CHAUVIN ARNOUX AG Moosacherstrasse 15 8804 AU / ZH Tel.: +41 44 727 75 55 Fax: +41 44 727 75 56 info@chauvin-arnoux.ch www.chauvin-arnoux.ch

UNITED KINGDOM

Chauvin Arnoux Ltd Unit 1 Nelson Ct, Flagship Sq Shaw Cross Business Pk, Dewsbury West Yorkshire - WF12 7TH Tel.: +44 1924 460 494 Fax: +44 1924 455 328 info@chauvin-arnoux.co.uk www.chauvin-arnoux.com

USA

CHAUVIN ARNOUX INC d.b.a AEMC Instruments 15 Faraday Drive Dover - NH 03820 Tel.: +1 (800) 945-2362 Fax: +1 (603) 742-2346 sales@aemc.com www.aemc.com

Chauvin Arnoux Energy

16 rue Georges Besse - 92182 Antony - France Tel.: 01 75 60 10 30 - Fax : 01 46 66 62 54 Email: CAEnergy@chauvin-arnoux.com

